动手学深度学习(Pytorch版)代码实践 -卷积神经网络-24深度卷积神经网络AlexNet

24深度卷积神经网络AlexNet

在这里插入图片描述

import torch
from torch import nn
import liliPytorch as lp
import liliPytorch as lp
import matplotlib.pyplot as plt

dropout1 = 0.5
#Alexnet架构
net = nn.Sequential(
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),

    nn.Conv2d(96, 256, kernel_size=5, padding=2),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),

    nn.Conv2d(256, 384, kernel_size=3, padding=1),
    nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1),
    nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    
    nn.Flatten(),
    nn.Linear(6400, 4096),
    nn.ReLU(),
    nn.Dropout(dropout1),
    nn.Linear(4096, 4096),
    nn.ReLU(),
    nn.Dropout(dropout1),
    nn.Linear(4096,10)
)

#魔改一下
lilinet = nn.Sequential(
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),

    nn.Conv2d(96, 256, kernel_size=5, padding=2),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nn.MaxPool2d(kernel_size=3, stride=2),

    nn.Flatten(),
    nn.Linear(6400, 4096),
    nn.ReLU(),
    nn.Dropout(dropout1),
    nn.Linear(4096, 4096),
    nn.ReLU(),
    nn.Dropout(dropout1),
    nn.Linear(4096,10)
)


# 通过在每一层打印输出的形状,我们可以检查模型
X = torch.rand(size=(1, 1, 224, 224), dtype=torch.float32) 
for layer in net:
    X = layer(X) # 将输入依次通过每一层
    print(layer.__class__.__name__, 'output shape: \t', X.shape) # 打印每一层的输出形状
"""
Conv2d output shape:     torch.Size([1, 96, 54, 54])
ReLU output shape:       torch.Size([1, 96, 54, 54])
MaxPool2d output shape:          torch.Size([1, 96, 26, 26])
Conv2d output shape:     torch.Size([1, 256, 26, 26])
ReLU output shape:       torch.Size([1, 256, 26, 26])
MaxPool2d output shape:          torch.Size([1, 256, 12, 12])
Conv2d output shape:     torch.Size([1, 384, 12, 12])
ReLU output shape:       torch.Size([1, 384, 12, 12])
Conv2d output shape:     torch.Size([1, 384, 12, 12])
ReLU output shape:       torch.Size([1, 384, 12, 12])
Conv2d output shape:     torch.Size([1, 256, 12, 12])
ReLU output shape:       torch.Size([1, 256, 12, 12])
MaxPool2d output shape:          torch.Size([1, 256, 5, 5])
Flatten output shape:    torch.Size([1, 6400])
Linear output shape:     torch.Size([1, 4096])
ReLU output shape:       torch.Size([1, 4096])
Dropout output shape:    torch.Size([1, 4096])
Linear output shape:     torch.Size([1, 4096])
ReLU output shape:       torch.Size([1, 4096])
Dropout output shape:    torch.Size([1, 4096])
Linear output shape:     torch.Size([1, 10])
"""

#读取数据集
batch_size = 64
train_iter, test_iter = lp.loda_data_fashion_mnist(batch_size,  resize=224) # 加载Fashion-MNIST数据集

#Alexnet架构
# lr, num_epochs = 0.01, 10
# batch_size = 128
# lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
# loss 0.329, train acc 0.879, test acc 0.883

# 魔改
lr, num_epochs = 0.1, 10
lp.train_ch6(lilinet, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
plt.show() # 显示训练曲线

#lr, num_epochs = 0.01, 10
#batch_size = 128
#loss 0.356, train acc 0.868, test acc 0.870

#lr, num_epochs = 0.1, 10
#batch_size = 64
#loss 0.212, train acc 0.920, test acc 0.903

运行结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/757610.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

操作系统之混淆知识

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、前言🚀🚀🚀二、正文☀️☀️☀️1.页面大小和页内偏移量之间的关系是什么? 三、总结🍓🍓…

如何在写代码中找到乐趣

平时我们写代码呢,多数情况都是流水线式写代码,基本就可以实现业务逻辑了。 如何在写代码中找到乐趣呢,我觉得,最好的方式就是:使用设计模式优化自己的业务代码。 参考资料: 实战!工作中常用到…

RAID0、RAID1、RAID5、RAID10、软RAID

硬盘 连续空间 无法 扩容 每个raid对应每个raid卡,没有阵列卡就不能用raid lvm 非连续空间 可以动态扩容 raid 备份, 提高读写性能,不能扩容 raid 是磁盘的集合,按照排列组合的方法不 一,给 raid 去了不同的名字…

操作系统-文件的物理结构(文件分配方式)

文章目录 总览文件块和磁盘块连续分配顺序访问直接访问(随机访问)为什么连续分配同时支持这两种访问模式? 链接分配隐式链接显示链接小结索引分配链接方案多层索引混合索引小结 总结 总览 文件数据存放在外存中 文件块和磁盘块 文件内通过逻…

ASUS华硕A豆14笔记本电脑I421EAYB,I421EQYB_ADOL14EA工厂模式原厂Win11系统安装包下载

适用型号:ADOL14EA笔记本I421EAYB、I421EQYB 链接:https://pan.baidu.com/s/1krU8m_lbApyUfZQo5E4cCQ?pwd0ewl 提取码:0ewl 华硕原装WIN11系统工厂安装包,带有MyASUS WinRE RECOVERY恢复功能、自带所有驱动、出厂主题壁纸、系…

k8s token加新节点

在 master 节点执行 kubeadm token create --print-join-command得到token和cert,这两个参数在2个小时内可以重复使用,超过以后就得再次生成 kubeadm join apiserver.k8s.com --token mpfjma.4vjjg8flqihor4vt --discovery-token-ca-cert-hash sha…

UML建模笔记

5个视图 设计。类,接口,对象如何协作。实现。组件,运行程序,文档关系。用例。用户功能期望。进程。并发与同步相关进程,线程。部署。部署到计算机。 建模目的 和客户共创追踪需求变更协同开发进度控制持续迭代测试生…

java用pdf.js在线预览pdf文件(jeecg框架)

最近在jeecg框架的后台要做一个pdf在线预览的页面功能,可是每次点预览都是下载,所以就要解决这个问题,现在解决了,记录一下,防止后面踩坑。 先放代码: 下面是点“预览”按钮的点击事件,代码放…

自定义一个MyBaits脱敏插件

自定义一个MyBaits脱敏插件 用于对查询结果中的敏感数据进行脱敏处理。这个插件将拦截ResultSetHandler对象的处理结果,对某些敏感字段进行脱敏。 插件实现步骤 创建脱敏插件类。注册插件。 1. 创建脱敏插件类 首先,我们创建一个自定义插件类 DataM…

Unity面试八股文之寻路算法BFS广度优先搜索

文章目录 广度优先搜索(Breadth-First Search, BFS)算法 广度优先搜索(Breadth-First Search, BFS)算法 BFS算法是一种用于图或树的遍历算法。它逐层扩展节点,从起始节点开始,首先访问其所有邻居节点&…

如何从0构建一款类似pytest的工具

Pytest主要模块 Pytest 是一个强大且灵活的测试框架,它通过一系列步骤来发现和运行测试。其核心工作原理包括以下几个方面:测试发现:Pytest 会遍历指定目录下的所有文件,找到以 test_ 开头或 _test.py 结尾的文件,并且…

全网唯一免费无水印AI视频工具!

最近Morph Studio开始免费公测!支持高清画质,可以上传语音,同步口型,最重要的是生成的视频没有水印! Morph Studio国内就可以访问,可以使用国内邮箱注册(我用的163邮箱),…

基于协同过滤的电影推荐与大数据分析的可视化系统

基于协同过滤的电影推荐与大数据分析的可视化系统 在大数据时代,数据分析和可视化是从大量数据中提取有价值信息的关键步骤。本文将介绍如何使用Python进行数据爬取,Hive进行数据分析,ECharts进行数据可视化,以及基于协同过滤算法…

【FFmpeg】avformat_write_header函数

FFmpeg相关记录: 示例工程: 【FFmpeg】调用ffmpeg库实现264软编 【FFmpeg】调用ffmpeg库实现264软解 【FFmpeg】调用ffmpeg库进行RTMP推流和拉流 【FFmpeg】调用ffmpeg库进行SDL2解码后渲染 流程分析: 【FFmpeg】编码链路上主要函数的简单分…

LeetCode 207. 课程表

思路:这是一道拓扑排序问题,拓扑排序听起来可能有点复杂,但实际上它是个相当直观的概念。想象一下,你有很多事情要做,但有些事情必须在另一些事情完成之后才能开始,就像你得先穿上袜子再穿鞋子 拓扑排序就…

【UML用户指南】-23-对高级行为建模-状态机

目录 1、概述 2、状态 2.1、状态的组成 3、转移 3.1、转移的组成 4、高级状态和转移 4.1、进入效应和退出效应 4.2、内部转移 4.3、do活动 4.4、延迟事件 4.5、子状态机 5、子状态 5.1、非正交子状态 5.2、历史状态 5.3、正交子状态 6、分叉与汇合 7、主动对象…

Uboot重定位

Uboot重定位 一、重定位的意义二、介绍一些重定位相关的表项结构(节)三、uboot的重定位过程:一、重定位的意义 uboot的重定位有两次,第一次是在编译成镜像后,在makefile中调用进行处理的,其调用tools/riscv_prelink.c的代码进行重定位处理(主要就是对重定位表中的R_RIS…

Linux多进程和多线程(一)

进程 进程的概念 进程(Process)是操作系统对一个正在运行的程序的一种抽象。它是系统运行程序的最小单位,是资源分配和调度的基本单位。 进程的特点如下 进程是⼀个独⽴的可调度的活动, 由操作系统进⾏统⼀调度, 相应的任务会被调度到cpu …

[软件安装]Dev C++

一、下载Dev C软件安装包 1、官网下载官网 2、百度网盘下载压缩包 二、安装Dev C 1、解压Dev C软件安装包 2、找到【Dev-Cpp 5.11…】应用程序,右键选择【以管理员身份运行】它 3、设置语言 回到桌面,右键桌面上的【Dev C 5.11软件图标】&#xff0c…

vue插槽的简单使用

默认插槽 1.在Category中创建插槽 <slot>默认值<slot/> 2.在App中使用 <Category tittle"美食"> <ul ><li v-for"(l,index) in foods" :key"index">{{l}}</li></ul> </Category> 3.运行后的…