Python源码05:使用Pyecharts画词云图图

**Pyecharts是一个用于生成 Echarts 图表的 Python 库。Echarts 是一个基于 JavaScript 的数据可视化库,提供了丰富的图表类型和交互功能。**通过 Pyecharts,你可以使用 Python 代码生成各种类型的 Echarts 图表,例如折线图、柱状图、饼图、散点图等。

Pyecharts 提供了许多方便的 API 和方法,可以让你轻松地创建和定制自己的图表。以下是一些常用的 Pyecharts 方法:

Bar():用于创建柱状图

Line():用于创建折线图

Pie():用于创建饼图

Scatter():用于创建散点图

Option():用于设置图表选项

render():用于生成 HTML 文件并打开图表

示例源码1
在这里插入图片描述

import pyecharts.options as opts
from pyecharts.charts import WordCloud

data = [
    ("生活资源", "999"),
    ("供热管理", "888"),
    ("供气质量", "777"),
    ("生活用水管理", "688"),
    ("一次供水问题", "588"),
    ("交通运输", "516"),
    ("城市交通", "515"),
    ("环境保护", "483"),
    ("房地产管理", "462"),
    ("城乡建设", "449"),
    ("社会保障与福利", "429"),
    ("社会保障", "407"),
    ("文体与教育管理", "406"),
    ("公共安全", "406"),
    ("公交运输管理", "386"),
    ("出租车运营管理", "385"),
    ("供热管理", "375"),
    ("市容环卫", "355"),
    ("自然资源管理", "355"),
    ("粉尘污染", "335"),
    ("噪声污染", "324"),
    ("土地资源管理", "304"),
    ("物业服务与管理", "304"),
    ("医疗卫生", "284"),
    ("粉煤灰污染", "284"),
    ("占道", "284"),
    ("供热发展", "254"),
    ("农村土地规划管理", "254"),
    ("生活噪音", "253"),
    ("供热单位影响", "253"),
    ("城市供电", "223"),
    ("房屋质量与安全", "223"),
    ("大气污染", "223"),
    ("房屋安全", "223"),
    ("文化活动", "223"),
    ("拆迁管理", "223"),
    ("公共设施", "223"),
    ("供气质量", "223"),
    ("供电管理", "223"),
    ("燃气管理", "152"),
    ("教育管理", "152"),
    ("医疗纠纷", "152"),
    ("执法监督", "152"),
    ("设备安全", "152"),
    ("政务建设", "152"),
    ("县区、开发区", "152"),
    ("宏观经济", "152"),
    ("教育管理", "112"),
    ("社会保障", "112"),
    ("生活用水管理", "112"),
    ("物业服务与管理", "112"),
    ("分类列表", "112"),
    ("农业生产", "112"),
    ("二次供水问题", "112"),
    ("城市公共设施", "92"),
    ("拆迁政策咨询", "92"),
    ("物业服务", "92"),
    ("物业管理", "92"),
    ("社会保障保险管理", "92"),
    ("低保管理", "92"),
    ("文娱市场管理", "72"),
    ("城市交通秩序管理", "72"),
    ("执法争议", "72"),
    ("商业烟尘污染", "72"),
    ("占道堆放", "71"),
    ("地上设施", "71"),
    ("水质", "71"),
    ("无水", "71"),
    ("供热单位影响", "71"),
    ("人行道管理", "71"),
    ("主网原因", "71"),
    ("集中供热", "71"),
    ("客运管理", "71"),
    ("国有公交(大巴)管理", "71"),
    ("工业粉尘污染", "71"),
    ("治安案件", "71"),
    ("压力容器安全", "71"),
    ("身份证管理", "71"),
    ("群众健身", "41"),
    ("工业排放污染", "41"),
    ("破坏森林资源", "41"),
    ("市场收费", "41"),
    ("生产资金", "41"),
    ("生产噪声", "41"),
    ("农村低保", "41"),
    ("劳动争议", "41"),
    ("劳动合同争议", "41"),
    ("劳动报酬与福利", "41"),
    ("医疗事故", "21"),
    ("停供", "21"),
    ("基础教育", "21"),
    ("职业教育", "21"),
    ("物业资质管理", "21"),
    ("拆迁补偿", "21"),
    ("设施维护", "21"),
    ("市场外溢", "11"),
    ("占道经营", "11"),
    ("树木管理", "11"),
    ("农村基础设施", "11"),
    ("无水", "11"),
    ("供气质量", "11"),
    ("停气", "11"),
    ("市政府工作部门(含部门管理机构、直属单位)", "11"),
    ("燃气管理", "11"),
    ("市容环卫", "11"),
    ("新闻传媒", "11"),
    ("人才招聘", "11"),
    ("市场环境", "11"),
    ("行政事业收费", "11"),
    ("食品安全与卫生", "11"),
    ("城市交通", "11"),
    ("房地产开发", "11"),
    ("房屋配套问题", "11"),
    ("物业服务", "11"),
    ("物业管理", "11"),
    ("占道", "11"),
    ("园林绿化", "11"),
    ("户籍管理及身份证", "11"),
    ("公交运输管理", "11"),
    ("公路(水路)交通", "11"),
    ("房屋与图纸不符", "11"),
    ("有线电视", "11"),
    ("社会治安", "11"),
    ("林业资源", "11"),
    ("其他行政事业收费", "11"),
    ("经营性收费", "11"),
    ("食品安全与卫生", "11"),
    ("体育活动", "11"),
    ("有线电视安装及调试维护", "11"),
    ("低保管理", "11"),
    ("劳动争议", "11"),
    ("社会福利及事务", "11"),
    ("一次供水问题", "11"),
]


(
    WordCloud()
    .add(series_name="热点分析", data_pair=data, word_size_range=[6, 66])
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="热点分析", title_textstyle_opts=opts.TextStyleOpts(font_size=23)
        ),
        tooltip_opts=opts.TooltipOpts(is_show=True),
    )
    .render("basic_wordcloud.html")
)

源码示例02在这里插入图片描述

from pyecharts import options as opts
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType


words = [
    ("Sam S Club", 10000),
    ("Macys", 6181),
    ("Amy Schumer", 4386),
    ("Jurassic World", 4055),
    ("Charter Communications", 2467),
    ("Chick Fil A", 2244),
    ("Planet Fitness", 1868),
    ("Pitch Perfect", 1484),
    ("Express", 1112),
    ("Home", 865),
    ("Johnny Depp", 847),
    ("Lena Dunham", 582),
    ("Lewis Hamilton", 555),
    ("KXAN", 550),
    ("Mary Ellen Mark", 462),
    ("Farrah Abraham", 366),
    ("Rita Ora", 360),
    ("Serena Williams", 282),
    ("NCAA baseball tournament", 273),
    ("Point Break", 265),
]
c = (
    WordCloud()
    .add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND)
    .set_global_opts(title_opts=opts.TitleOpts(title="WordCloud-shape-diamond"))
    .render("wordcloud_diamond.html")
)

示例源码03在这里插入图片描述


from pyecharts import options as opts
from pyecharts.charts import WordCloud

words = [
    ("花鸟市场", 1446),
    ("汽车", 928),
    ("视频", 906),
    ("电视", 825),
    ("Lover Boy 88", 514),
    ("动漫", 486),
    ("音乐", 53),
    ("直播", 163),
    ("广播电台", 86),
    ("戏曲曲艺", 17),
    ("演出票务", 6),
    ("给陌生的你听", 1),
    ("资讯", 1437),
    ("商业财经", 422),
    ("娱乐八卦", 353),
    ("军事", 331),
    ("科技资讯", 313),
    ("社会时政", 307),
    ("时尚", 43),
    ("网络奇闻", 15),
    ("旅游出行", 438),
    ("景点类型", 957),
    ("国内游", 927),
    ("远途出行方式", 908),
    ("酒店", 693),
    ("关注景点", 611),
    ("旅游网站偏好", 512),
    ("出国游", 382),
    ("交通票务", 312),
    ("旅游方式", 187),
    ("旅游主题", 163),
    ("港澳台", 104),
    ("本地周边游", 3),
    ("小卖家", 1331),
    ("全日制学校", 941),
    ("基础教育科目", 585),
    ("考试培训", 473),
    ("语言学习", 358),
    ("留学", 246),
    ("K12课程培训", 207),
    ("艺术培训", 194),
    ("技能培训", 104),
    ("IT培训", 87),
    ("高等教育专业", 63),
    ("家教", 48),
    ("体育培训", 23),
    ("职场培训", 5),
    ("金融财经", 1328),
    ("银行", 765),
    ("股票", 452),
    ("保险", 415),
    ("贷款", 253),
    ("基金", 211),
    ("信用卡", 180),
    ("外汇", 138),
    ("P2P", 116),
    ("贵金属", 98),
    ("债券", 93),
    ("网络理财", 92),
    ("信托", 90),
    ("征信", 76),
    ("期货", 76),
    ("公积金", 40),
    ("银行理财", 36),
    ("银行业务", 30),
    ("典当", 7),
    ("海外置业", 1),
    ("汽车", 1309),
    ("汽车档次", 965),
    ("汽车品牌", 900),
    ("汽车车型", 727),
    ("购车阶段", 461),
    ("二手车", 309),
    ("汽车美容", 260),
    ("新能源汽车", 173),
    ("汽车维修", 155),
    ("租车服务", 136),
    ("车展", 121),
    ("违章查询", 76),
    ("汽车改装", 62),
    ("汽车用品", 37),
    ("路况查询", 32),
    ("汽车保险", 28),
    ("陪驾代驾", 4),
    ("网络购物", 1275),
    ("做我的猫", 1088),
    ("只想要你知道", 907),
    ("团购", 837),
    ("比价", 201),
    ("海淘", 195),
    ("移动APP购物", 179),
    ("支付方式", 119),
    ("代购", 43),
    ("体育健身", 1234),
    ("体育赛事项目", 802),
    ("运动项目", 405),
    ("体育类赛事", 337),
    ("健身项目", 199),
    ("健身房健身", 78),
    ("运动健身", 77),
    ("家庭健身", 36),
    ("健身器械", 29),
    ("办公室健身", 3),
    ("商务服务", 1201),
    ("法律咨询", 508),
    ("化工材料", 147),
    ("广告服务", 125),
    ("会计审计", 115),
    ("人员招聘", 101),
    ("印刷打印", 66),
    ("知识产权", 32),
    ("翻译", 22),
    ("安全安保", 9),
    ("公关服务", 8),
    ("商旅服务", 2),
    ("展会服务", 2),
    ("特许经营", 1),
    ("休闲爱好", 1169),
    ("收藏", 412),
    ("摄影", 393),
    ("温泉", 230),
    ("博彩彩票", 211),
    ("美术", 207),
    ("书法", 139),
    ("DIY手工", 75),
    ("舞蹈", 23),
    ("钓鱼", 21),
    ("棋牌桌游", 17),
    ("KTV", 6),
    ("密室", 5),
    ("采摘", 4),
    ("电玩", 1),
    ("真人CS", 1),
    ("轰趴", 1),
    ("家电数码", 1111),
    ("手机", 885),
    ("电脑", 543),
    ("大家电", 321),
    ("家电关注品牌", 253),
    ("网络设备", 162),
    ("摄影器材", 149),
    ("影音设备", 133),
    ("办公数码设备", 113),
    ("生活电器", 67),
    ("厨房电器", 54),
    ("智能设备", 45),
    ("个人护理电器", 22),
    ("服饰鞋包", 1047),
    ("服装", 566),
    ("饰品", 289),
    ("鞋", 184),
    ("箱包", 168),
    ("奢侈品", 137),
    ("母婴亲子", 1041),
    ("孕婴保健", 505),
    ("母婴社区", 299),
    ("早教", 103),
    ("奶粉辅食", 66),
    ("童车童床", 41),
    ("关注品牌", 271),
    ("宝宝玩乐", 30),
    ("母婴护理服务", 25),
    ("纸尿裤湿巾", 16),
    ("妈妈用品", 15),
    ("宝宝起名", 12),
    ("童装童鞋", 9),
    ("胎教", 8),
    ("宝宝安全", 1),
    ("宝宝洗护用品", 1),
    ("软件应用", 1018),
    ("系统工具", 896),
    ("理财购物", 440),
    ("生活实用", 365),
    ("影音图像", 256),
    ("社交通讯", 214),
    ("手机美化", 39),
    ("办公学习", 28),
    ("应用市场", 23),
    ("母婴育儿", 14),
    ("游戏", 946),
    ("手机游戏", 565),
    ("PC游戏", 353),
    ("网页游戏", 254),
    ("游戏机", 188),
    ("模拟辅助", 166),
    ("个护美容", 942),
    ("护肤品", 177),
    ("彩妆", 133),
    ("美发", 80),
    ("香水", 50),
    ("个人护理", 46),
    ("美甲", 26),
    ("SPA美体", 21),
    ("花鸟萌宠", 914),
    ("绿植花卉", 311),
    ("狗", 257),
    ("其他宠物", 131),
    ("水族", 125),
    ("猫", 122),
    ("动物", 81),
    ("鸟", 67),
    ("宠物用品", 41),
    ("宠物服务", 26),
    ("书籍阅读", 913),
    ("网络小说", 483),
    ("关注书籍", 128),
    ("文学", 105),
    ("报刊杂志", 77),
    ("人文社科", 22),
    ("建材家居", 907),
    ("装修建材", 644),
    ("家具", 273),
    ("家居风格", 187),
    ("家居家装关注品牌", 140),
    ("家纺", 107),
    ("厨具", 47),
    ("灯具", 43),
    ("家居饰品", 29),
    ("家居日常用品", 10),
    ("生活服务", 883),
    ("物流配送", 536),
    ("家政服务", 108),
    ("摄影服务", 49),
    ("搬家服务", 38),
    ("物业维修", 37),
    ("婚庆服务", 24),
    ("二手回收", 24),
    ("鲜花配送", 3),
    ("维修服务", 3),
    ("殡葬服务", 1),
    ("求职创业", 874),
    ("创业", 363),
    ("目标职位", 162),
    ("目标行业", 50),
    ("兼职", 21),
    ("期望年薪", 20),
    ("实习", 16),
    ("雇主类型", 10),
    ("星座运势", 789),
    ("星座", 316),
    ("算命", 303),
    ("解梦", 196),
    ("风水", 93),
    ("面相分析", 47),
    ("手相", 32),
    ("公益", 90),
]

c = (
    WordCloud()
    .add(
        "",
        words,
        word_size_range=[20, 100],
        textstyle_opts=opts.TextStyleOpts(font_family="cursive"),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="WordCloud-自定义文字样式"))
    .render("wordcloud_custom_font_style.html")
)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/75400.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

通过 Amazon SageMaker JumpStart 部署 Llama 2 快速构建专属 LLM 应用

来自 Meta 的 Llama 2 基础模型现已在 Amazon SageMaker JumpStart 中提供。我们可以通过使用 Amazon SageMaker JumpStart 快速部署 Llama 2 模型,并且结合开源 UI 工具 Gradio 打造专属 LLM 应用。 Llama 2 简介 Llama 2 是使用优化的 Transformer 架构的自回归语…

el-table实现懒加载(el-table-infinite-scroll)

2023.8.15今天我学习了用el-table对大量的数据进行懒加载。 效果如下: 1.首先安装: npm install --save el-table-infinite-scroll2 2.全局引入: import ElTableInfiniteScroll from "el-table-infinite-scroll";// 懒加载 V…

通过网关访问微服务,一次正常,一次不正常 (nacos配置的永久实例却未启动导致)

微服务直接访问没问题,通过网关访问,就一次正常访问,一次401错误,交替正常和出错 负载均衡试了 路由配置检查了 最后发现nacos下竟然有2个order服务实例,我明明只开启了一个呀 原来之前的8080端口微服务还残留&…

开工大吉|华润鞋业二期自动化改造项目开工典礼圆满举行

2023年8月10日上午,山东百华鞋业有限公司择良辰吉时隆重举行了华润鞋业二期厂房动工仪式,公司总经理郭兴梅女士携公司管理层代表和施工单位代表参加了动工仪式。 根据公司发展规划,对未来发展的美好期许,以及公司生产与研发保持的…

ApacheCon - 云原生大数据上的 Apache 项目实践

Apache 软件基金会的官方全球系列大会 CommunityOverCode Asia(原 ApacheCon Asia)首次中国线下峰会将于 2023 年 8 月 18-20 日在北京丽亭华苑酒店举办,大会含 17 个论坛方向、上百个前沿议题。 字节跳动云原生计算团队在此次 CommunityOve…

手机里视频太大怎么压缩?压缩教程分享

现在视频文件的体积越来越大了,动不动就是几个GB起步,如果后期再剪辑处理一下,更是会占据更多的设备空间了,还会导致我们传输受到限制,这时候就需要我们对视频进行压缩处理,下面给大家分享几个简单的方法&a…

Python爬虫——scrapy_基本使用

安装scrapy pip install scrapy创建scrapy项目,需要在终端里创建 注意:项目的名字开头不能是数字,也不能包含中文 scrapy startproject 项目名称 示例: scrapy startproject scra_baidu_36创建好后的文件 3. 创建爬虫文件&…

go的gin和gorm框架实现切换身份的接口

使用go的gin和gorm框架实现切换身份的接口,接收前端发送的JSON对象,查询数据库并更新,返回前端信息 接收前端发来的JSON对象,包含由openid和登陆状态组成的一个string和要切换的身份码int型 后端接收后判断要切换的身份是否低于该…

vue3+vite配置vantUI主题

❓在项目中统一配置UI主题色,各个组件配色统一修改 vantUI按需安装 参考vantUI文档 创建vantVar.less文件夹进行样式编写 vantVar.less :root:root{//导航--van-nav-bar-height: 44px;//按钮--van-button-primary-color: #ffffff;--van-button-primary-backgr…

CentOS系统环境搭建(三)——Centos7安装DockerDocker Compose

centos系统环境搭建专栏🔗点击跳转 Centos7安装Docker&Docker Compose 使用 yum 安装Docker 内核 [rootVM-4-17-centos ~]# uname -r 3.10.0-1160.88.1.el7.x86_64Docker 要求 CentOS 系统的内核版本高于 3.10 更新 yum yum update安装需要的软件包&#x…

kubernetes的存储卷使用

目录 一、为什么使用存储卷 二、emptyDir存储卷 1.概念 2.创建Pod emptyDir 3. 验证emptyDir存储卷 三、hostPath存储卷 1.概念 2.创建Pod hostPath 3.验证hostPath存储卷 三、nfs共享存储卷 1.概念 2.安装nfs,配置nfs服务 3.创建Pod 4.验证nfs存储卷 一、…

Electron-builder打包和自动更新

前言 文本主要讲述如何为 electron 打包出来软件配置安装引导和结合 github 的 release 配置自动更新。 electron-builder 是将 Electron 工程打包成相应平台的软件的工具,我的工程是使用 electron-vite 构建的,其默认集成了 electron-builder &#x…

欧拉算法与埃氏筛法比较

#include<iostream> using namespace std; bool data[100000005]; // zhishu用于存储质数的数组 &#xff0c;cnt下标 int zhishu[100000000],cnt0;int main() {data[1] 1;// 1表示素数 int n;cin >> n;// 循环遍历for(int i2;i<n;i){if(data[i] 0){// 表明是…

SDXL1.0大模型安装与使用

个人网站&#xff1a; 文章目录 前言一、模型下载使用&#xff08;简单体验&#xff09;二、模型下载使用&#xff08;繁琐版&#xff09;三、ComfyUI 前言 使用 Stable Diffusion XL&#xff0c;您可以使用较短的提示创建描述性图像&#xff0c;并在图像中生成文字。该模型在…

vue自定义穿梭框支持远程滚动加载

分享-2023年资深前端进阶&#xff1a;前端登顶之巅-最全面的前端知识点梳理总结&#xff0c;前端之巅 *分享一个使用比较久的&#x1fa9c; 技术框架公司的选型(老项目)&#xff1a;vue2 iview-ui 方案的实现思路是共性的&#xff0c;展现UI样式需要你们自定义进行更改&#…

【Unity每日一记】向量操作摄像机的移动(向量加减)

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;uni…

Linux知识点 -- 进程概念(补充)

Linux知识点 – 进程概念&#xff08;补充&#xff09; 文章目录 Linux知识点 -- 进程概念&#xff08;补充&#xff09;一、进程地址空间的堆区二、虚拟地址到物理地址之间的转化三、虚拟地址到物理地址之间的映射 一、进程地址空间的堆区 在用户每次使用malloc等函数在进程的…

【设计模式——学习笔记】23种设计模式——策略模式Strategy(原理讲解+应用场景介绍+案例介绍+Java代码实现)

文章目录 案例引入传统方案实现实现分析 介绍基本介绍登场角色 案例实现案例一类图实现 案例二类图实现问答 策略模式在JDK源码中的使用总结文章说明 案例引入 有各种鸭子&#xff0c;比如野鸭、北京鸭、水鸭等。 鸭子有各种行为&#xff0c;比如走路、叫、飞行等。不同鸭子的…

[NLP]LLM 训练时GPU显存耗用量估计

以LLM中最常见的Adam fp16混合精度训练为例&#xff0c;分析其显存占用有以下四个部分&#xff1a; GPT-2含有1.5B个参数&#xff0c;如果用fp16格式&#xff0c;只需要1.5G*2Byte3GB显存, 但是模型状态实际上需要耗费1.5B*1624GB. 比如说有一个模型参数量是1M&#xff0c;在…

k8s 自身原理之 Service

好不容易&#xff0c;终于来到 k8s 自身的原理之 关于 Service 的一部分了 前面我们用 2 个简图展示了 pod 之间和 pod 与 node 之间是如何通信息的&#xff0c;且通信的数据包是不会经过 NAT 网络地址转换的 那么 Service 又是如何实现呢&#xff1f; Service 我们知道是用…