AI产品经理需要懂的算法和模型

本篇希望以精准推荐模型为案例通过全面的撰写将AI产品经理需要懂的算法和模型进行了系统的入门讲解。

一个产品经理经常疑惑的概念:

算法和模型的关系,产品经理懂得解决问题时将问题抽象为模型,对模型求解用算法,没有谁大谁小,算法和模型没有绝对的分界线。

这篇将主要从时下各种算法模型用于精准推荐都有其各自的优点和缺点带出我自创的精准推荐模型AI-UTAUT模型和实例解析,
顺道讲解从算法模型功能的相似性的角度为入门AI产品经理的同学讲解算法模型的另外一个维度。

一、传统的UTAUT推荐模型
什么叫UTAUT,传统上UTAUT指的是整合型科技接受模式,即通过这个模型各个因子来观察精准推荐模型中用户的接受意愿。

整合技术接受与使用模型(Unified theory of Acceptance and Use of Technology,简称UTAUT)是由 Venkatesh and Davis 文卡塔什和戴维斯
整合了技术适配模型(Task techfit,TTF)、理性行为理论(Theory of Reasoned Action,TRA)、计划行为理论(Throry of Planned Behavior,TPB)、
创新扩散理论(InnovationDiffusionTheory,IDT)、社会认知理论(SocialCongnitive Theory,SCT)、PC利用模型(Model of PCU tilization,MPCU)、
复合 TAM&TPB模型(Combined TAM and TPB,C&TAM&TPB)、动机模型(Motivational model,MM),提炼出了四个核心变量和四个控制变量。

四个核心变量是:努力期望(Effort Expectancy)、绩效期望(PerformanceExpectancy)、社会影响(Social influence)和便利条件(Facilitating Condition)。
四个控制变量是:年龄、性别、经验和自愿性。

在许多大厂的产品经理中经常采用UTAUT模型来做精准推荐模型因子分析。

因为每一个网络用户的生活轨迹都被互联网忠实地记录着,网络服务商抓取与挖掘了这些轨迹,形成“数据痕迹”,堪称“大数据”。

【一一AGI大模型学习 所有资源获取处一一】

①人工智能/大模型学习路线

②AI产品经理入门指南

③大模型方向必读书籍PDF版

④超详细海量大模型实战项目

⑤LLM大模型系统学习教程

⑥640套-AI大模型报告合集

⑦从0-1入门大模型教程视频

⑧AGI大模型技术公开课名额

根据这些大数据,产品运营可以对消费者的兴趣爱好、购买行为进行科学的分析和预测,透过大数据找到商业价值,从而向消费者进行精准定向推荐。
虽然产品运营利用大数据实施精准推荐后,大幅提升了营销效果,改变了企业“知晓浪费了50%的广告费,却不知晓哪50%被浪费”的尴尬局面,
但运营的精准推荐不仅给用户带来了“确实想要的东西”,也带来了垃圾信息、无用信息,既给用户带来了便利又造成了困扰。

因此,产品运营用大数据精准推荐信息推送的结果是,并不是所有接触到精准推荐信息的用户都会接受并采取购买产品的行动。
消费者对大数据精准推荐的接受意愿的影响因素有哪些?UTAUT模型回答了一部分,但是也不充足。

原来的UTAUT模型在时下的产品运营需求中问题如下:
其一,UTAUT模型对便利条件依赖占据1/4这是无必要的,
因为产品运营用大数据精准推荐是通过手机短信、电子邮件广告、搜索引擎、个性化引擎推荐、门户网站、微信、微博、竞价排名搜索、关键词搜索广告、点告、窄告等工具向消费者
进行精准信息推送的,而当今社会,智能手机和 PC机已经进入千家万户,所以消费者可以借助智能手机和 PC机接收企业向自己推送的精准营销信息,便利性不存在问题。

其二,过于依赖年龄结构因素,我国网民的年龄结构依然偏向年轻,以10~39岁群体为主,占整体的72.1%。因此,产品的大数据精准营销的主要对象以年轻人为主。

其三,给予性别因子的比重过高,在我的新AI-UTAUT模型中是权重降低的,原因是由于产品运营大数据精准推荐的特点是在合适的时间、合适的地点,凭借合适的媒介,
通过合适的渠道,将合适的商品销售给合适的消费者,因此,只要企业大数据推送的信息是精准的,无论男女,皆能接受。

二、创新的AI-UTAUT模型-以AI新零售企业为例
先介绍一下投资的这家企业的产品形态,这家企业有线下部分职能零售店,也有线上部分软件产品包含,小程序APP、ERP、CRM等系统产品。
特别介绍一下这家产品的场景是在地铁和地铁站附近的大型ShoppingMall。用户主要是居住工作在城市的白领为主。

精准推荐的目标是:用自有的用户为基础数据训练算法模型,这个模型是当用户到达某个兴趣点位附近时可以精准为其希望搜索到的品牌恰巧运用系统推荐用户感兴趣的品牌,
这个模型暂时命名为AILBA。

1. 模型构建
利用AI技术整合UTAUT模型与4C理论的接受意愿影响因素模型,虽然UTAUT模型被普遍地应用于技术接受因素的研究,但对于大多数实际情况下———用户对大数据精准推荐的接受意愿
的影响因素,其不仅受模型中因素的影响,还受消费者需求是否得以满足的影响。

因此,在模型设计过程中,我为所投资的企业产品搭建了AI技术为引擎以UTAUT模型为框架,结合4C理论,加以修改,构建整合了AI-UTAUT模型以期待该模型精准的为用户
推荐符合消费者需求的产品。

2. 模型解释
该模型主要工作站是推荐引擎和人工规则,推荐引擎中所用的算法将在下一个段落根据算法的功能相似性一节里面细讲。

场景数据是指用户所处的环境例如用户刚刚下地铁,用户刚刚在某个购物中心某家店有过消费过某个商品A,根据上篇讲述的交叉关联销售可以为用户推荐关联商品B。

用户画像人人都在说,用户画像贵在准。
广义上,” 用户画像 ” 指的是企业从各个渠道收集用户信息,再根据所获信息对用户进行人格化分析,包括人口属性、兴趣爱好、购物偏好、社交属性等等,
为每一位用户打上专属标签。

用户画像的分析维度:
其一、人口属性:
地域、年龄、性别、文化、职业、收入、生活习惯、消费习惯等;

其二、产品行为:
产品类别、活跃频率、停留时间、问题咨询、产品喜好、产品驱动、使用习惯、产品消费等;

用户画像对精准推荐的好处,随着移动互联网的发展,各类手机应用的频繁使用,用户的时间越来越趋于碎片化,各维度的信息也更丰富,
移动应用开发者们也从以技术为中心的产品设计渐渐转向了以用户为中心。

对用户的精准画像,一方面可以很好地描述用户的许多特征,有助于产品人员展开针对性的设计产品;
另一方面,对运营人员开展精准化营销、个性化推荐也起到了至关重要的作用。

如今,”用户画像”被越来越多的谈及,它是产品经理、运营者们津津乐道的宝贝。
作为销售员们喜爱的一款工具,我们来看看我所投资企业人工智能推荐引擎是如何进行用户画像,帮助企业实现精准营销的。

企业管理者或销售人员借助我搭建的AI-UTAUT模型,便能够实时获取客户的信息和行为轨迹,包括他们的基本特征、联系方式,他们浏览过哪个页面,
他们喜欢点击、分享怎样的内容,他们会咨询什么样的问题。

AI-UTAUT模型还能实时把客户的行为与销售员进行关联,例如一旦监测到客户点击小程序中的任何页面,即会通知销售人员,帮助销售获取潜在客户,实现标签化管理。
销售员还可以与客户发微信消息,而且无需加好友、不用跳转,即可随心实现。

根据客户的行为分析,AI-UTAUT模型运用独特的人工智能算法,可以自动生成成交几率预测,以漏斗图的形式,把客户按照成功率由高往低排,让销售员一眼便能知道谁才是潜在用户,
避免销售人员多做无用功。

例如,某汽车4S店销售员小王周一上午到达公司后,第一件事就是打开自己的微信,这时他看到AI-UTAUT模型助理已经推送了几十条销售线索。

当他点开”客户”,可以查看AI所分析的预计成功率,并且系统已经自动按成功率高低排出客户的优先级。

这时系统显示一位叫阿莲的女士的预计成交率在85%,她留言询问某款SUV是否有更紧凑的型号,小王立马进行回复。5分钟后,他的手机铃声响起,来电显示正是阿莲。
短短5分钟,一笔20万以上的业务就被敲定了。

此外,用户画像除了在沟通和识别客户方面有帮助外,还能对维系老客户和促进二次转化,发挥更多价值。

例如,我们还可以在AI-UTAUT后台选取一批用户的某些属性,做一些预测功能,例如预测用户是否会流失;或者预测用户是否会对新上线的功能感兴趣。
对应的,预测出很可能会流失的用户,针对性进行挽留的营销活动,比如发红包、发优惠券等。针对会对新功能感兴趣的用户,可以给其推送新功能,来增加用户的粘性。

我所搭建的AI-UTAUT模型在所投资的这家正好解决了原来商家的优惠券使用率低、用户粘性低的问题。

综合来看AI-UTAUT模型不仅仅帮我所投资的这家企业的销售额提升,同时这套模型算法也为周边的商家进行了赋能。
例如上文中所举的例子赋能4S点销售人员更好的服务客户的例子。

三、AI-UTAUT模型深度解析
1. 模型中的绩效期望因素
绩效期望正向影响消费者接受企业大数据精准推荐意愿,因为消费者接受企业大数据精准推荐的信息有可能提高其信息搜索的效率。

企业要推送切实满足消费者需求的信息,企业就必须做好消费者画像的识别工作,完善数据分析推荐模型,及时根据消费者多元、动态、
不可持续的需求进行数据推荐模型的完善和修正,做好消费者画像特征分析工作,保证向消费者推送的信息是消费者需求的,真真正正地提高消费者信息搜索的效率。

2. 模型中的基于消费者需求和期望的信息方面
基于消费者需求和期望的信息正向影响消费者接受企业大数据精准推荐意愿,因为基于消费者需求和期望的信息是适当的、准确的、有质量的信息。

企业要根据消费者经浏览、访问、购买形成的各式大数据进行细致分析,洞察消费者的显性需求和潜在需求,做好消费者产品喜好、心理接受价位、产品品牌等信息的预测,
及时地以合适的方式,在合适的时间,将合适的产品信息推送给消费者,提高消费者和产品的匹配度,提高消费者转化率。

3. 模型中在线及时沟通方面
在线沟通正向影响消费者接受企业大数据精准营销意愿,因为在线沟通能缩短消费者与企业人员的沟通距离,在避免向消费者单向推销,令消费者反感的同时,
还可以让消费者互相了解购后感受,降低信息不对称给消费者带来的负面影响的概率。

企业要搭建营销全过程的消费者参与互动平台。企业可通过微博、微信与消费者进行互动,也可通过设置商品评价区、讨论区让消费者留言,
在及时了解消费者对企业产品或服务评价的同时,也可为企业产品或服务营造良好的口碑。

当然,消费者对企业的产品或服务不满意时,也可通过互动平台及时反馈,企业也可及时处理,降低不良口碑对企业的影响。

企业还可鼓励喜欢购后分享、有公众影响力的消费者进行分享,以期带动其他消费者选择企业的产品或服务。

我利用AI-UTAUT模型所赋能的地铁新零售企业旗下的一类是智能贩售机,我建议厂家在机器上安装一键在线沟通功能,就是为了上述原因。

企业在开展精准推荐的过程中,若企业人员能与消费者进行沟通,就可将单向促销转换为“互动、双赢、关联关系”的沟通,最大化地缩短了企业和消费者间的沟通距离,
避免一味地向消费者进行单向推销,在无法触及消费者需求点的情况下,使消费者产生反感、抵触的情绪。

当然,企业开展的大数据精准推荐并不是一次性的活动,而是一个循环往复的过程,企业人员在与消费者周而复始的沟通中能不断地收集消费者的信息,
对自身的精准推荐模型算法不断调整和优化,进而提升消费者接受企业大数据精准推荐的意愿,提升对企业产品或服务的购买意愿。

四、设计AI-UTAUT模型时所研究过的算法模型
这篇中我们将按功能相似性讲解算法模型,这里所讲解的模型算法是我在创造AI-UTAUT模型过程中多数检验过的。
所以在讲解算法模型的时候会总结哪些算法模型用在哪个场景比较多,哪些算法模型是AI产品经理经常会遇到的。

由功能的相似性分组的算法模型如下:
机器学习算法通常根据其功能的相似性进行分组。例如,基于树的方法以及神经网络的方法。但是,仍有算法可以轻松适应多个类别。
如学习矢量量化,这是一个神经网络方法和基于实例的方法。

在读者阅读本段文字的时候如果有些属于不太熟悉,或者有些模型算法听到的比较少请不用担心,一方面可能是这类算法模型以后也很好用,
如果需要用到的话,到时候再针对性的学习这类算法模型也不迟。另外一方面我会尽量指明这些算法应用的场景。

1. 回归算法
回归算法涉及对变量之间的关系进行建模,我们在使用模型进行的预测中产生的错误度量来改进。这些方法是数据统计的主力,所以回归算法又称为回归分析。
此外,它们也已被选入统计机器学习。

常用的的回归算法是:
普通最小二乘回归(OLSR);
线性回归;
Logistic回归;
逐步回归;
多元自适应回归样条(MARS);
局部估计的散点图平滑(LOESS);

用途场景:预测未来,预测销量等等。
例子:如下图:当一天中早高峰或者晚高峰的时候实际上是商场里面的品牌商销量减少的时候,这一点可以通过我的AI-UTAUT模型数据实证。

2. 基于实例的算法
该类算法是解决实例训练数据的决策问题。这些方法构建了示例数据的数据库,它需要将新数据与数据库进行比较。
为了比较,我们使用相似性度量来找到最佳匹配并进行预测。出于这个原因,基于实例的方法也称为赢者通吃方法和基于记忆的学习,重点放在存储实例的表示上。
因此,在实例之间使用相似性度量。

常用的基于实例的算法是:
k-最近邻(kNN);
学习矢量量化(LVQ);
自组织特征映射(SOM);
本地加权学习(LWL);
正则化算法;

用途场景:商品上新双11前夕高达千万级。因为第三方POP商品上新没有人工审核环节,商会有意、无意地将商品发布到错误类目,更有甚者,
部分商家采用批量上新和批量搬家工具,导致大规模错挂商品的出现,不断冲击着商品生态防线,影响用户购物体验,并带来了诸如食品、药品和成人用品等相关的一系列监管风险。

面对海量级的商品数据和高达上千个类目的商品层级分类体系,如何才能有效判别商品类目挂靠的正确与否,实现全方位和高效的监控。
在商品类目预测这个问题上,很多电商公司在过去的10年里一直在不断探索和改进,公开资料显示,电商巨头eBay先后采用了传统的规则和统计等模型、
如KNN、KNN+SLM和DNN几种方法,准确率从最初的50%一步步提高到了90%+。

3. 决策树算法
决策树方法用于构建决策模型,这是基于数据属性的实际值。
决策在树结构中进行分叉,直到对给定记录做出预测决定。决策树通常快速准确,这也是机器学习从业者的最爱的算法。

常用的的决策树算法是:
分类和回归树(CART);
迭代Dichotomiser 3(ID3);
C4.5和C5.0;
卡方自动交互检测(CHAID);
决策树桩;
M5;
条件决策树;

用途场景:有一个经典的案例判断一个西瓜是否是好瓜就是典型的决策树算法模型的应用。

上图说明:
有一个最直观的解释,如果你吃的大部分的好瓜纹理都很清晰,那么你肯定首先去判断面前的瓜纹理是不是清晰,如果不清晰那极有可能不是好瓜。
但是还有一个问题,好瓜大都纹理清晰,但并不是所有纹理清晰的瓜都是好瓜,你需要继续根据其他特征去判断。

假设你面前的瓜纹理清晰,那么你回去想你吃过的纹理清晰的好瓜中,还有什么让你印象深刻的特征?对了,你想起来根蒂蜷缩的纹理清晰的瓜是大都是好瓜。
上面我们讲过了怎么判断一个瓜是好瓜。如果让计算机去学习如何判断好瓜,那么我们需要给它很多的样例。
这些样例数据中,有好瓜有坏瓜,每个样例都给出了瓜的纹理、根蒂、色泽、触感、敲声等等特征。
有了样例数据,计算机如何得到一个像人类判断过程中的那种顺序判断的思路呢?
答案就是决策树。

4. 贝叶斯算法
这些方法适用于贝叶斯定理的问题,如分类和回归。

常用的贝叶斯算法是:
朴素贝叶斯;
高斯朴素贝叶斯;
多项朴素贝叶斯;
平均一依赖估计量(AODE);
贝叶斯信念网络(BBN);
贝叶斯网络(BN);

用途场景:例如判断网络环境是否异常,使用无监督学习获得每个设备、每个人员的网络行为模式,结合行为分析与高等数学,
运用递归贝叶斯估计(Recursive Bayesian Estimation,RBE)理论,提供对事件的估计概率并随着新特征的发现不断更新,自动判断网络行为是否存在异常。

5. 聚类算法
几乎所有的聚类算法都涉及使用数据中的固有结构,这需要将数据最佳地组织成最大共性的组。

常用的聚类算法是:
K-均值;
K-平均;
期望最大化(EM);
分层聚类;

用途场景:在用机器做聚类学习的时候,我们每种算法都对应有相应的计算原则,可以把输入的各种看上去彼此“相近”的向量分在一个群组中。
然后下一步,人们通常更有针对性地去研究每一组聚在一起的对象所拥有的共性以及那些远离各个群组的孤立点——
这种孤立点研究在刑侦、特殊疾病排查和用户群体划分等方面都有应用。

6. 关联规则学习算法
关联规则学习方法提取规则,它可以完美的解释数据中变量之间的关系。这些规则可以在大型多维数据集中被发现是非常重要的。

常用的关联规则学习算法是:
Apriori算法;
Eclat算法;
用途场景:在《 AI产品经理从懂精准推荐模型到产品创新》上篇中讲述比较多,感兴趣的读者可以翻阅。

7. 人工神经网络算法
这些算法模型大多受到生物神经网络结构的启发。它们可以是一类模式匹配,可以被用于回归和分类问题。它拥有一个巨大的子领域,因为它拥有数百种算法和变体。

常用的人工神经网络算法是:
感知机;
反向传播;
Hopfield神经网络;
径向基函数神经网络(RBFN);

用途场景:使用神经网络算法从用户的自拍中完成人脸识别,并自动抠出轮廓,并根据本地算法,将自拍快速转变为动画风格或其它自定义风格的表情包。
8. 深度学习算法
深度学习算法是人工神经网络的更新,同时深度学习算法也是机器学习的典型代表算法。他们更关心构建更大更复杂的神经网络。

常用的深度学习算法是:
深玻尔兹曼机(DBM);
深信仰网络(DBN);
卷积神经网络(CNN);
堆叠式自动编码器;

用途场景:非常多,有医疗影像识别、食品配料识别,人脸识别等等。

9. 常用机器学习算法列表
朴素贝叶斯分类器机器学习算法

应用场景:通常,网页、文档和电子邮件进行分类将是困难且不可能的。
这就是朴素贝叶斯分类器机器学习算法的用武之地。分类器其实是一个分配总体元素值的函数。

例如,垃圾邮件过滤是朴素贝叶斯算法的一种流行应用。因此,垃圾邮件过滤器是一种分类器,可为所有电子邮件分配标签“垃圾邮件”或“非垃圾邮件”。
基本上,它是按照相似性分组的最流行的学习方法之一。这适用于流行的贝叶斯概率定理。

K-means:聚类机器学习算法
通常,K-means是用于聚类分析的无监督机器学习算法。此外,K-Means是一种非确定性和迭代方法,该算法通过预定数量的簇k对给定数据集进行操作。
因此,K-Means算法的输出是具有在簇之间分离的输入数据的k个簇。

支持向量机学习算法
基本上,它是用于分类或回归问题的监督机器学习算法。SVM从数据集学习,这样SVM就可以对任何新数据进行分类。
此外,它的工作原理是通过查找将数据分类到不同的类中。我们用它来将训练数据集分成几类。而且,有许多这样的线性超平面,
SVM试图最大化各种类之间的距离,这被称为边际最大化。SVM分为两类:线性SVM:在线性SVM中,训练数据必须通过超平面分离分类器。
非线性SVM:在非线性SVM中,不可能使用超平面分离训练数据。

Apriori机器学习算法
这是一种无监督的机器学习算法。我们用来从给定的数据集生成关联规则。关联规则意味着如果发生项目A,则项目B也以一定概率发生,生成的大多数关联规则都是IF_THEN格式。

应用场景:例如,如果人们购买iPad,那么他们也会购买iPad保护套来保护它。Apriori机器学习算法工作的基本原理:如果项目集频繁出现,则项目集的所有子集也经常出现。

线性回归机器学习算法
它显示了2个变量之间的关系,它显示了一个变量的变化如何影响另一个变量。

决策树机器学习算法
决策树是图形表示,它利用分支方法来举例说明决策的所有可能结果。在决策树中,内部节点表示对属性的测试。
因为树的每个分支代表测试的结果,并且叶节点表示特定的类标签,即在计算所有属性后做出的决定。此外,我们必须通过从根节点到叶节点的路径来表示分类。

随机森林机器学习算法
它是首选的机器学习算法。我们使用套袋方法创建一堆具有随机数据子集的决策树。
我们必须在数据集的随机样本上多次训练模型,因为我们需要从随机森林算法中获得良好的预测性能。
此外,在这种集成学习方法中,我们必须组合所有决策树的输出,做出最后的预测。此外,我们通过轮询每个决策树的结果来推导出最终预测。

Logistic回归机器学习算法
这个算法的名称可能有点令人困惑,Logistic回归算法用于分类任务而不是回归问题。此外,这里的名称“回归”意味着线性模型适合于特征空间。
该算法将逻辑函数应用于特征的线性组合,这需要预测分类因变量的结果。
小结:
我搭建的AI-UTAUT精准推荐模型有Apriori算法、神经网络算法、回归算法、聚类算法、贝叶斯算法,预测销量的有回归算法,
可以直接调用的有外面成熟的人脸识别算法、语音识别算法等。

产品经理日常工作中最常用的算法是:Apriori算法、聚类模型、决策模型、贝叶斯算法、关联规则算法和深度学习、机器学习等。

五、AI产品经理入门标准和入门类型
AI产品经理入门前提条件主要是基于有哪些类别的企业,时下和未来的一段时间AI企业主要有:
第一类是纯粹的AI技术企业,
第二类是+AI的企业,
第三类是综合型企业AI作为助推器型的企业。

AI产品经理在第一类企业里面做AI产品经理如果产品是AI算法本身,即例如你要输出的产品是人脸识别系统,这个时候需要AI产品经理对算法懂的要深刻一些,
建议加入此类企业的产品朋友可以针对性的补充算法知识。

如果在这类企业里面从事的是AI+的工作,那么主要的重点可以放在为这类AI系统找到适合的应用场景,并占领市场先机,先研发出来可以落地的产品。

AI产品经理在第二类企业里面更多的是基于行业经验,看到行业内部可以被AI取代或者提升效率的点,+上AI。为行业赋能。

第三类综合性企业主要是BAT/TMD等大型科技网络公司,也包含中国平安、招行银行等国营企事业单位。
这类企业往往既有自己的核心算法,同时有希望旗下细分业务+上AI。

建议加入此类公司或者单位的AI产品经理可以从数据型AI产品经理做起,因为我们都知道AI包含数据、算法、算力,而大型企业核心需求是打通数据竖井,
将历史上累计的大数据用好,用AI技术得到更好的运用,所以AI产品经理可以适当补充数据分析方面的知识。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景
学习计划:
  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/752804.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

移动端 UI 风格,书写华丽篇章

移动端 UI 风格,书写华丽篇章

点心甜品商城小程序店铺是怎样开展的

很多人非常喜欢甜品点心,包括在宴会、送礼、家庭聚会等场景也有应用度,该赛道也存在头部品牌,其余则是以地区为主的线下店,线上则主要以外卖及电商快递等方式经营。 除了线下店和其它平台进驻外,商家还需要多渠道获客…

使用Python进行Socket接口测试

大家好,在现代软件开发中,网络通信是不可或缺的一部分。无论是传输数据、获取信息还是实现实时通讯,都离不开可靠的网络连接和有效的数据交换机制。而在网络编程的基础中,Socket(套接字)技术扮演了重要角色…

视频均衡驱动器,SDI产品PIN LMH0387

视频均衡驱动器,功能仿制 TI公司 LMH0387产品。本期间支持 DVB-ASI,作为驱动器能够选择输出速率,作为均衡接收器能支持100m 以上传输距离(线缆类型 Belden1694A)。 工作温度范围:-40℃~85℃:a) 电源电压:3.14V~3.46V: 驱动器输出信号:单端 CML 信号: 均衡器输出信号:LVDS 电平…

爬虫是什么?

目录 1.什么是互联网爬虫? 2.爬虫核心? 3.爬虫的用途? 4.爬虫分类? 5.反爬手段? 1.什么是互联网爬虫? 如果我们把互联网比作一张大的蜘蛛网,那一台计算机上的数据便是蜘蛛网上的一个猎物,而爬虫程序…

Kafka入门到精通(三)-Kafka

Kafka简介 Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动&#xf…

《昇思25天学习打卡营第7天 | 昇思MindSpore模型训练》

第七天 之前学习了模型训练的构建数据集,定义神经网络模型。本节学习了定义超参、损失函数及优化器,输入数据集进行训练与评估。 模型训练的步骤 1.构建数据集 2.定义神经网络模型 3.定义超参、损失函数及优化器 4.输入数据集进行训练与评估

通义灵码上线 Visual Studio 插件市场啦!

通义灵码,是阿里云出品的一款基于通义大模型的智能编码辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码优化、注释生成、代码解释、研发智能问答、异常报错排查等能力,提供代码智能生成、研发智能问答能力。 通义灵…

【华为战报】5月、6月HCIP考试战报!

华为认证:HCIA-HCIP-HCIE 点击查看: 【华为战报】4月 HCIP考试战报! 【华为战报】2月、3月HCIP考试战报! 【华为战报】11月份HCIP考试战报! 【HCIE喜报】HCIE备考2个月丝滑通关,考试心得分享&#xff…

聊一聊 C# 弱引用 底层是怎么玩的

一:背景 1. 讲故事 最近在分析dump时,发现有程序的卡死和WeakReference有关,在以前只知道怎么用,但不清楚底层逻辑走向是什么样的,借着这个dump的契机来简单研究下。 二:弱引用的玩法 1. 一些基础概念 …

IDEA 2024.1.4 的 AI Assistant 终于被激活了,我是这样干的!

ai assistant激活成功后,如图 ai assistant渠道:https://web.52shizhan.cn/activity/ai-assistant 在去年五月份的 Google I/O 2023 上,Google 为 Android Studio 推出了 Studio Bot 功能,使用了谷歌编码基础模型 Codey,Codey 是…

加载数据到mysql并解决原始数据乱码问题

查看linux上数据: 使用命令转换编码: iconv -f GBK -t UTF-8 toutiao.csv -o toutiao2.csv加载数据到mysql: load data local infile /root/toutiao2.csv INTO TABLE pdz FIELDS TERMINATED BY , LINES TERMINATED BY \r\n;

「ETL趋势」FDL数据开发支持版本管理、实时管道支持多对一、数据源新增支持神通

FineDataLink作为一款市场上的顶尖ETL工具,集实时数据同步、ELT/ETL数据处理、数据服务和系统管理于一体的数据集成工具,进行了新的维护迭代。本文把FDL4.1.8最新功能作了介绍,方便大家对比:(产品更新详情:…

口碑最好的麦克风品牌有哪些?轻揭无线领夹麦克风哪个牌子好!

​无线领夹麦克风,无疑是现代音频技术的杰出代表。它摆脱了传统有线麦克风的束缚,让声音的传播更加自由、灵活。无论是追求极致音质的音乐爱好者,还是需要高效沟通的商务人士,无线领夹麦克风都能满足你的需求,让你的声…

计算机基础——经典排序算法总结2

直接插入排序的过程:先将序列第一个记录暂时作为有序子序列,从第二个开始逐个进行插入,直至整个序列有序。一趟排序将elem[i]插入到已排好序elem[0…i-1]中各元素做比较后的任何对应位置,所以未必能选出一个元素放在其最终位置上。…

高考完的假期想学c语言 要注意那些问题?

在开始前刚好我有一些资料,是我根据网友给的问题精心整理了一份「嵌入式的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!! 大学教得少、内容落后时…

Python应用开发——30天学习Streamlit Python包进行APP的构建(11)

st.bokeh_chart 显示互动式虚化图。 Bokeh 是 Python 的一个图表库。此函数的参数与 Bokeh 的 show 函数的参数非常接近。有关 Bokeh 的更多信息,请访问 https://bokeh.pydata.org。 要在 Streamlit 中显示 Bokeh 图表,请在调用 Bokeh 的 show 时调用 st.bokeh_chart。 Fu…

SDIO学习(2)--SD卡 2.0协议

本文参考文档: 《SD Specifications Part 1 Physical Layer Simplified Specification Version 2.00》 1 SD卡简介 1.1 SD卡概念 1.2 SD卡外形和接口 Clk:时钟线,由SDIO主机产生 CMD:命令控制线,SDIO主机通过改…

flutter开发实战-ListWheelScrollView与自定义TimePicker时间选择器

flutter开发实战-ListWheelScrollView与自定义TimePicker 最近在使用时间选择器的时候,需要自定义一个TimePicker效果,当然这里就使用了ListWheelScrollView。ListWheelScrollView与ListView类似,但ListWheelScrollView渲染效果类似滚筒效果…

Oracle新特性速递:未来数据库技术的无限可能

文章目录 一、自治数据库:智能化与自动化的革命二、机器学习集成:智能数据分析的新境界三、区块链技术:确保数据完整性与透明性四、云原生数据库:灵活扩展与快速部署五、人工智能优化器:智能查询执行计划《Oracle从入门…