[数据结构】——七种常见排序

文章目录

    • 前言
  • 一.冒泡排序
  • 二.选择排序
  • 三.插入排序
  • 四.希尔排序
  • 五.堆排序
  • 六.快速排序
    • hoare
    • 挖坑法
    • 前后指针
    • 快排递归实现:
    • 快排非递归实现:
  • 七、归并排序
    • 归并递归实现:
    • 归并非递归实现:
  • 八、各个排序的对比图

前言

  • 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小, 递增或递减的排列起来的操作。
  • 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
  • 内部排序:数据元素全部放在内存中的排序。
  • 外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序

接下来会涉及到的排序
在这里插入图片描述

这里写了一个测试排序性能的代码,方便我们观察各个排序的好坏

//测试排序的性能
void TestOP()
{
	srand((unsigned)time(NULL));
	//N的数值手动改变,以判断性能的好坏
	const int N = 100000;
	int* a1 = (int*)malloc(sizeof(int) * N);
	int* a2 = (int*)malloc(sizeof(int) * N);
	int* a3 = (int*)malloc(sizeof(int) * N);
	int* a4 = (int*)malloc(sizeof(int) * N);
	int* a5 = (int*)malloc(sizeof(int) * N);
	int* a6 = (int*)malloc(sizeof(int) * N);
	int* a7 = (int*)malloc(sizeof(int) * N);

	for (int i = 0; i < N; ++i)
	{
		a1[i] = rand() + i;
		a2[i] = a1[i];
		a3[i] = a1[i];
		a4[i] = a1[i];
		a5[i] = a1[i];
		a6[i] = a1[i];
		a7[i] = a1[i];
	}

	int begin1 = clock();
	InsertSort(a1, N);
	int end1 = clock();

	int begin2 = clock();
	ShellSort(a2, N);
	int end2 = clock();

	int begin3 = clock();
	SelectSort(a3, N);
	int end3 = clock();

	int begin4 = clock();
	HeapSort(a4, N);
	int end4 = clock();

	int begin5 = clock();
	QuickSort(a5, 0, N - 1);
	int end5 = clock();

	int begin6 = clock();
	MergeSort(a6, N);
	int end6 = clock();

	int begin7 = clock();
	BubbleSort(a7, N);
	int end7 = clock();

	printf("InsertSort:%d\n", end1 - begin1);
	printf("ShellSort:%d\n", end2 - begin2);
	printf("SelectSort:%d\n", end3 - begin3);
	printf("HeapSort:%d\n", end4 - begin4);
	printf("QuickSort:%d\n", end5 - begin5);
	printf("MergeSort:%d\n", end6 - begin6);
	printf("BubbleSort:%d\n", end7 - begin7);

	free(a1);
	free(a2);
	free(a3);
	free(a4);
	free(a5);
	free(a6);
	free(a7);
}

还有交换函数

//交换函数
void Swap(int* x, int* y)
{
 int tmp = *x;
 *x = *y;
 *y = tmp;
}


以下排序默认是升序,即从小到大的顺序

一.冒泡排序

冒泡的时间复杂度是O(N^2),空间复杂度是O(1),具有稳定性

在这里插入图片描述

从图中我们可以看出,冒泡排序其实就是一种选择排序,即走一次,找到最大的数放在最右边,接下来要排序的数据就少了一个,再走一次,找到此时最大的数放在此时的最右边,接下来不断重复此步骤,数据就有序了

//冒泡排序
void BubbleSort(int* a, int n)
{
	for (int i = 0; i < n - 1; i++)
	{
		int flag = 0;
		for (int j = 0; j < n - 1 - i; j++)
		{
			if (a[j] > a[j + 1])
			{
				Swap(&a[j], &a[j + 1]);
				flag = 1;
			}
		}
		if (flag == 0)
		{
			return;
		}
	}
}

虽然我们使用了flag进行了优化,使冒泡排序在最好的情况下的时间复杂度位O(N),但是实际上冒泡排序只有教学意义,没有实践意义,效率非常低
在十万个数据下面,冒泡走了5s,而在一百万数据下面,走了接近1min了,可见效率是如此的低下

在这里插入图片描述
在这里插入图片描述

二.选择排序

选择排序的时间复杂度是O(N^2),空间复杂度是O(1),具有不稳定性

在这里插入图片描述

从图中我们可以清楚的看到,选择排序每走一次,找到最大或者最小的数据放在最右边或者最左边,然后减少排序的个数,以此类推完成排序

这个排序方法可以优化一下,即走一次找到最小的同时找到最大的

//选择排序
void SelectSort(int* a, int n)
{
 int begin = 0;
 int end = n - 1;
 while (begin < end)
 {
  int mini = begin;
  int maxi = begin;
  for (int i = begin + 1; i <= end; i++)
  {
   if (a[i] < a[mini])
   {
    mini = i;
   }
   if (a[i] > a[maxi])
   {
    maxi = i;
   }
  }
  Swap(&a[begin], &a[mini]);
  if (maxi == begin)
  {
   maxi = mini;
  }
  Swap(&a[end], &a[maxi]);
  begin++;
  end--;
 }
}

选择排序即没有实际意义,也没有教学意义,效率低下
在十万个数据下面,选择走了8s,而在一百万数据下面,走了接近15min了,效率不行

在这里插入图片描述
在这里插入图片描述

三.插入排序

插入排序的时间复杂度是O(N^2),空间复杂度是O(1),具有稳定性
在这里插入图片描述

插入排序的思路就是假设在[0,end]是有序的数据,在end+1的位置上插入一个新的数据,用tmp保存插入的数据。
如果end位置上的值大于tmp,end就减1,比较此时end位置上的值与tmp的大小
如果end位置上的值小于tmp,退出循环,将tmp赋给end + 1 位置上的值

//插入排序
void InsertSort(int* a, int n)
{
 for (int i = 0; i < n - 1; i++)
 {
  int end = i;
  //[0,end]是有序的,插入[end+1]数据
  int tmp = a[end + 1];
  while (end >= 0)
  {
   if (a[end] > tmp)
   {
    a[end + 1] = a[end];
    end--;
   }
   else
   {
    break;
   }
  }
  a[end + 1] = tmp;
 }
}

虽然插入排序的时间复杂度是O(N^2),但是它具有实践意义

在十万个数据下面,走了1s,在一百万数据下面,走了16s了,可见效率是还可以

在这里插入图片描述

在这里插入图片描述

四.希尔排序

希尔排序的时间复杂度是O(N^1.3),空间复杂度是O(1),不具有稳定性

在这里插入图片描述

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。

希尔排序的思想:

  1. 预排序:先分gap,在各自的组内进行插入排序
  2. 插入排序:排好序后,减小gap的值,再次进行预排序,直到gap = 1,进行插入排序,这样数据就有序了

假设gap = 3,将原数据分成3组,那么第一趟预排序的结果为下图
在这里插入图片描述
可以看到在走了一趟后的数据,比原始数据接近有序,这就是希尔排序的优点

//希尔排序
void ShellSort(int* a, int n)
{
	int gap = n;
	while (gap > 1)
	{
		gap = gap / 3 + 1;
		//多组一起走
		for (int i = 0; i < n-gap; i++)
		{
			int end = i;
			int tmp = a[end + gap];
			while (end >= 0)
			{
				if (a[end] > tmp)
				{
					a[end + gap] = a[end];
					end -= gap;
				}
				else
				{
					break;
				}
			}
			a[end + gap] = tmp;
		}
	}
}

在十万个数据下面,希尔走了31ms,在一百万数据下面,走了264ms,可见效率还是很快的

在这里插入图片描述
在这里插入图片描述

五.堆排序

堆排序的时间复杂度是O(NlogN),空间复杂度是O(1),不具有稳定性

在这里插入图片描述

堆排序(Heap Sort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的基本思想是:

  1. 将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。
  2. 将其与末尾元素进行交换,此时末尾就为最大值。
  3. 然后将剩余n-1 个元素重新构造成一个堆,这样会得到 n 个元素的次小值。 如此反复执行,便能得到一个有序序列了。
//向下调整法
void AdjustDown(int* a, int n, int parent)
{
	int child = 2 * parent + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] > a[child])
		{
			child++;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = 2 * parent + 1;
		}
		else
		{
			break;
		}
	}
}

//堆排序
void HeapSort(int* a, int n)
{
	//创建堆
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
	//排序
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}

在十万个数据下面,堆排走了45ms,在一百万数据下面,走了473ms,效率还可以
在这里插入图片描述
在这里插入图片描述

六.快速排序

快速排序的平均时间复杂度是O(NlogN),但是在最坏情况下有可能是O(N^2),空间复杂度是O(logN)~O(N),不具有稳定性
在这里插入图片描述

快速排序(Quick Sort)是一种常用的排序算法。快速排序的基本思想是通过选择一个基准元素,将数组分为两部分,使得左边的元素都小于等于基准元素,右边的元素都大于等于基准元素。然后,对左右两部分分别进行快速排序,直到整个数组有序。

但是当数组已经有序时是最坏情况,快速排序的时间复杂度可能会达到O(N^2)。但是,在大多数情况下,快速排序的时间复杂度都非常接近O (NlogN)

快速排序优化的方法:

1.三数取中

可以看到假定最左边的数作为基准元素,会不准确,因为有可能是最大的数也有可能是最小的数,影响效率,我们可以选择三个数中间的数来作为基准元素

//三数取中法  left  midi  right
int GetMidi(int* a,int left,int right)
{
	int midi = (left + right) / 2;
	if (a[left] > a[midi])
	{
		if (a[midi] >= a[right])
		{
			return midi;
		}
		else if (a[left] < a[right])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
	else
	{
		if (a[midi] <= a[right])
		{
			return midi;
		}
		else if (a[left] > a[right])
		{
			return left;
		}
		else
		{
			return right;
		}
	}
}

2.小区间优化

由于快速排序要递归数据区间,只要递归就要消耗空间,那么当数据区间比较小时,可以用插入排序,不用在递归了

//小区间排序 -> 插入排序
if ((right - left + 1) < 10)
{
	//注意数组取的位置和数组的长度
	InsertSort(a+left, right - left + 1);
}

快速排序有三种排序方法:

hoare

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
此时,数据6已经排好了,只需要递归它的左边与右边进行排序即可

// 快速排序hoare版本
int PartSort1(int* a, int left, int right)
{
	//三数取中
	int midi = GetMidi(a, left, right);
	Swap(&a[left], &a[midi]);
	int keyi = left;

	int begin = left;
	int end = right;
	while (begin < end)
	{
		while (begin < end && a[end] >= a[keyi])
		{
			end--;
		}
		while (begin < end && a[begin] <= a[keyi])
		{
			begin++;
		}
		Swap(&a[begin], &a[end]);
	}
	Swap(&a[keyi], &a[begin]);
	return begin;
}

挖坑法

在这里插入图片描述
在这里插入图片描述

// 快速排序挖坑法
int PartSort2(int* a, int left, int right)
{
	//三数取中
	int midi = GetMidi(a, left, right);
	Swap(&a[left], &a[midi]);
	int key = a[left];

	int begin = left;
	int end = right;
	while (begin < end)
	{
		while (begin < end && a[end] >= key)
		{
			end--;
		}
		a[begin] = a[end];
		while (begin < end && a[begin] <= key)
		{
			begin++;
		}
		a[end] = a[begin];
	}
	a[begin] = key;
	return begin;
}

前后指针

在这里插入图片描述
在这里插入图片描述

// 快速排序前后指针法
int PartSort3(int* a, int left, int right)
{
	//三数取中
	int midi = GetMidi(a, left, right);
	Swap(&a[left], &a[midi]);
	int keyi = left;

	int prev = left;
	int cur = prev + 1;
	while (cur <= right)
	{
		if (a[cur] < a[keyi] && ++prev != cur)
		{
			Swap(&a[cur], &a[prev]);
		}
		cur++;
	}
	Swap(&a[prev], &a[keyi]);
	return prev;
}

快排递归实现:

以上三种方法针对的是每一次排序,我们还需要递归剩下的区间来完成数据的有效

void QuickSort(int* a, int left, int right)
{
	//[left,right]是闭区间
	if (left >= right)
	{
		return;
	}
	//小区间排序 -> 插入排序
	if ((right - left + 1) < 10)
	{
		//注意数组取的位置和数组的长度
		InsertSort(a+left, right - left + 1);
	}
	else
	{
		//随便选择一种排序方法即可
		int keyi = PartSort3(a,left,right);
		//[left,keyi-1] keyi [keyi+1,right]
		//递归左边与右边
		QuickSort(a, left, keyi - 1);
		QuickSort(a, keyi + 1, right);
	}
}

在十万个数据下面,快速排序递归方法走了7ms,在一百万数据下面,走了80ms,可见效率非常快

在这里插入图片描述

在这里插入图片描述

快排非递归实现:

众所周知,递归会在栈上开辟空间,当递归的深度很大时,会导致栈溢出,这时我们可以把快速排序改成用非递归的形式实现

递归改为非递归的方法有两种:

  1. 用循环实现
  2. 利用栈来实现

现在我们利用栈来实现,这里的栈是数据结构里面的栈。因为内存的栈的空间很小,而堆的空间很大,数据结构的栈就是在堆上开辟的

在这里插入图片描述

// 快速排序 非递归实现 
//利用栈来实现
void QuickSortNonR(int* a, int left, int right)
{
	ST st;
	STInit(&st);
	STPush(&st, right);
	STPush(&st, left);
	while (!STEmpty(&st))
	{
		int begin = STTop(&st);
		STPop(&st);
		int end = STTop(&st);
		STPop(&st);

		int keyi = PartSort3(a, begin, end);
		//[begin,keyi-1] keyi [keyi+1,end]
		if (keyi + 1 < end)
		{
			STPush(&st, end);
			STPush(&st, keyi + 1);
		}
		if (begin < keyi - 1)
		{
			STPush(&st, keyi - 1);
			STPush(&st, begin);
		}
	}
	STDestroy(&st);
}

在十万个数据下面,快速排序非递归方法走了19ms,在一百万数据下面,走了283ms,可见效率与递归方法的差不多

在这里插入图片描述
在这里插入图片描述

七、归并排序

归并排序的时间复杂度是O(NlongN),空间复杂度是O(N),具有稳定性

在这里插入图片描述

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide
andConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

归并排序核心步骤:
将数据划分区间,区间大小从小到大,每个区间进行归并,归并完成后就要拷贝回去

在这里插入图片描述

归并递归实现:

void _MergeSort(int* a, int* tmp, int left,int right)
{
	//递归
	if (left >= right)
	{
		return;
	}
	int mid = (left + right) / 2;
	//[left,mid][mid+1,right]
	_MergeSort(a, tmp, left, mid);
	_MergeSort(a, tmp, mid+1, right);
	//归并
	int begin1 = left;
	int end1 = mid;
	int begin2 = mid + 1;
	int end2 = right;
	int i = left;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] < a[begin2])
		{
			tmp[i++] = a[begin1++];
		}
		else
		{
			tmp[i++] = a[begin2++];
		}
	}
	while (begin1 <= end1)
	{
		tmp[i++] = a[begin1++];
	}
	while (begin2 <= end2)
	{
		tmp[i++] = a[begin2++];
	}
	//拷贝
	memcpy(a + left, tmp + left, (right - left + 1) * sizeof(int));
}

//归并排序
void MergeSort(int* a, int n)
{
	int* tmp = (int*)malloc(n * sizeof(int));
	if (tmp == NULL)
	{
		perror("malloc fail");
		return;
	}
	_MergeSort(a, tmp, 0, n - 1);
	free(tmp);
	tmp = NULL;
}

在十万个数据下面,归并排序递归方法走了9ms,在一百万数据下面,走了93ms,可见效率非常快
在这里插入图片描述
在这里插入图片描述

归并非递归实现:

上面我们提到递归会有栈溢出的问题,所有我们可以尝试一下归并的非递归的实现方法

递归改为非递归的方法有两种:

  1. 用循环实现
  2. 利用栈来实现

这次我们使用循环来实现,归并的核心就是分区间进行排序,既然如此, 我们可以设置分组gap的初始值为1,然后归并一次,归并完成后gap乘以2,来进行下一次的归并区间,不断重复此步骤直到gap 大于等于 数组长度时退出循环

//归并排序 非递归实现
void MergeSortNonR(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc fail");
		return;
	}
	//分组排序 每次两个gap组进行归并排序
	int gap = 1;
	while (gap < n)
	{
		for (int i = 0; i < n; i+=2*gap)
		{
			int begin1 = i;
			int end1 = i + gap - 1;
			int begin2 = i + gap;
			int end2 = i + 2 * gap - 1;
			int j = i;
			//printf("[%d,%d],[%d,%d]", begin1, end1, begin2, end2);
			//如果begin2越界了,就不归并
			if (begin2 >= n)
			{
				break;
			}
			//如果end2越界了,就修正
			if (end2 >= n)
			{
				end2 = n - 1;
			}
			//归并排序
			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] < a[begin2])
				{
					tmp[j++] = a[begin1++];
				}
				else
				{
					tmp[j++] = a[begin2++];
				}
			}
			while (begin1 <= end1)
			{
				tmp[j++] = a[begin1++];
			}
			while (begin2 <= end2)
			{
				tmp[j++] = a[begin2++];
			}
			//拷贝
			memcpy(a + i, tmp + i, (end2 - i + 1) * sizeof(int));
		}
		gap *= 2;
	}
	free(tmp);
	tmp = NULL;
}

在十万个数据下面,归并排序非递归方法走了9ms,在一百万数据下面,走了87ms,可见效率非常快

在这里插入图片描述
在这里插入图片描述

八、各个排序的对比图

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/752668.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Mac中的xshell、xftp

ROYAL TSX 插件式支持远程连接linux、支持命令行、支持ftp、支持远程windows桌面。 免费版就足够使用了。&#xff08;支持维护一个Connections文件夹&#xff09; 需要在本地创建一个文件夹&#xff0c;用以保存链接信息 使用方法

Bytebase 2.20.0 - 支持为工单事件配置飞书个人通知

&#x1f680; 新功能 支持 Databricks。支持 SQL Server 的 TLS/SSL 连接。支持为工单事件配置飞书个人通知。支持限制用户注册的邮箱域名。 &#x1f514; 重大变更 将分类分级同步设置从数据库配置移至工作空间的全局配置。 SQL 编辑器只读模式下只允许执行 Redis 的只读…

抖音外卖服务商申请全域外卖系统源码部署,如何保证竞争力?

随着本地生活市场规模的逐渐扩大&#xff0c;多家互联网公司在加大投入力度的同时&#xff0c;也在不断调整其市场竞争策略&#xff0c;作为国内头部社交平台的抖音也不例外。就在近日&#xff0c;抖音发布了关于新增《【到家外卖】内容服务商开放准入公告》的意见征集通知&…

OSI七层模型TCP/IP四层面试高频考点

OSI七层模型&TCP/IP四层&面试高频考点 1 OSI七层模型 1. 物理层&#xff1a;透明地传输比特流 在物理媒介上传输原始比特流&#xff0c;定义了连接主机的硬件设备和传输媒介的规范。它确保比特流能够在网络中准确地传输&#xff0c;例如通过以太网、光纤和无线电波等媒…

SCI二区复现|体育场观众优化算法(SSO)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献5.代码获取 1.背景 2024年&#xff0c;M Nemati受到体育场观众的行为对比赛中球员行为的影响启发&#xff0c;提出了体育场观众优化算法&#xff08;Stadium Spectators Optimizer, SSO&#xff09;。 2.算法…

2023年第十四届蓝桥杯JavaB组省赛真题及全部解析(下)

承接上文&#xff1a;2023年第十四届蓝桥杯JavaB组省赛真题及全部解析&#xff08;下&#xff09;。 目录 七、试题 G&#xff1a;买二赠一 八、试题 H&#xff1a;合并石子 九、试题 I&#xff1a;最大开支 十、试题 J&#xff1a;魔法阵 题目来自&#xff1a;蓝桥杯官网…

Docker 安装最新版本 Jenkins

目录 1、下载、启动容器、更新到最新版本 2、查看初始密码两种方式&#xff1a; 3、默认安装的部分未汉化&#xff0c;删除默认的汉化插件。重启容器&#xff0c;重新安装汉化插件 4、安装 Publish over SSH、docker-build-step 、Docker Commons 插件 5、配置服务器连接信…

【LLM 论文】Self-Refine:使用 feedback 迭代修正 LLM 的 output

论文&#xff1a;Self-Refine: Iterative Refinement with Self-Feedback ⭐⭐⭐⭐ CMU, NeurIPS 2023, arXiv:2303.17651 Code: https://selfrefine.info/ 论文速读 本文提出了 Self-Refine 的 prompt 策略&#xff0c;可以在无需额外训练的情况下&#xff0c;在下游任务上产…

D13009-ASEMI电源开关三极管D13009

编辑&#xff1a;ll D13009-ASEMI电源开关三极管D13009 型号&#xff1a;D13009 品牌&#xff1a;ASEMI 批号&#xff1a;2024 沟道&#xff1a;NPN 电流&#xff1a;4A 电压&#xff1a;400V 安装方式&#xff1a;直插式封装 特性&#xff1a;NPN晶体管、三极管、12A…

分享10个AI搞钱副业,门槛低,普通人也能学的会!易上手!

前言 本期给大家分享的是利用AI 做副业的一些方法&#xff0c;大家可以挑选适合自己的赛道去搞钱 现在是人工智能时代&#xff0c;利用好AI 工具&#xff0c;可以降低普通人做副业的门槛&#xff0c;同时也能提高工作效率&#xff0c; 因此AI 赚钱的副业还是挺多的&#xff0…

【软考论文】项目背景及论文模版

目录 一、项目核心功能二、论文模板一、项目核心功能 二、论文模板 论文字数说明 总字数 2500 = 500 + 400 +400 * 3 + 300 背景:500 回答问题:400 三段论:1200 = 400 * 3 结论:300 ~ 400 摘要(<300字) 本人于2022年1月参与了某车厂的全渠道数字化精准营销平台项目,该…

想买一款好用的骨传导耳机怎么挑?一次给你搞定全方位的选购攻略

作为那么多年来购买了无数数码产品热爱听歌的我&#xff0c;也一直在寻找一款好的骨传导耳机&#xff0c;听音乐对我来说不仅仅是一种消遣方式&#xff0c;更多是一种对生活、工作上压力和困难的舒缓&#xff0c;在我购买了那么多款骨传导耳机中&#xff0c;对一些进行了测评与…

MySQL数据库——在Centos7环境安装

MySQL在Centos7环境安装 1.切换root用户 安装与卸载中&#xff0c;用户全部切换成为root&#xff0c;安装好后&#xff0c;普通用户也能使用 2.卸载不要的环境 要将自己环境中有关mysql的全都删除&#xff0c;避免安装过程中被影响 ps axj | grep mariadb 先检查是否有mari…

揭秘教学新利器:SmartEDA电路仿真软件,让电子学习更生动!

在数字化教育浪潮中&#xff0c;一款名为SmartEDA的电路仿真软件逐渐崭露头角&#xff0c;以其直观、易操作的特点&#xff0c;为电子学习领域带来了革命性的变化。今天&#xff0c;就让我们一起探讨如何使用SmartEDA进行教学&#xff0c;让电子学习变得更加生动有趣&#xff0…

健身馆预约小程序定制搭建会员管理系统次卡核销充值年卡saas账号

健身馆预约小程序定制搭建&#xff1a;打造高效会员管理系统 &#x1f3cb;️ 一、引言&#xff1a;为何需要健身馆预约小程序&#xff1f; 随着健康意识的提高&#xff0c;越来越多的人选择到健身馆进行锻炼。然而&#xff0c;传统的健身馆预约方式往往存在诸多不便&#xff…

Dataease安装,配置Jenkins自动部署

Dataease安装&#xff0c;配置Jenkins自动部署 一.安装Dataease 安装前准备&#xff1a;1.Ubuntu20.04 LTS国内源安装指定版本Docker 2.docker-compose安装 下载离线安装的安装包&#xff0c;下载地址&#xff1a;https://community.fit2cloud.com/#/download/dataease/v1-…

js导入导出

好久没有学习新的知识点了&#xff0c;今天开始学一下前端的知识点。直接在vscode里面编写&#xff0c;然后从基本的前端知识开始。 JS的导入导出 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"…

利用百数应用优化制造细节,提升生产效率的技术实践

制造管理是确保企业高效、高质生产的核心环节&#xff0c;对于提高企业的运营效率、质量控制、成本控制、交货期保障、资源优化、创新能力以及风险管理等方面都具有重要意义&#xff0c;它能帮助企业在激烈的市场竞争中保持领先地位&#xff0c;同时实现资源的有效利用和风险的…

动态规划06(leetcode322/279/139)—完全背包

参考资料&#xff1a; https://programmercarl.com/0322.%E9%9B%B6%E9%92%B1%E5%85%91%E6%8D%A2.html 322. 零钱兑换 题目描述&#xff1a; 给你一个整数数组 coins &#xff0c;表示不同面额的硬币&#xff1b;以及一个整数 amount &#xff0c;表示总金额。 计算并返回可以…

《昇思25天学习打卡营第5天 | 昇思MindSpore网络构建》

第五天 今天学习了神经网络模型是由神经网络层和Tensor操作构成的&#xff0c;mindspore.nn提供了常见神经网络层的实现&#xff0c;在MindSpore中&#xff0c;Cell类是构建所有网络的基类&#xff0c;也是网络的基本单元。一个神经网络模型表示为一个Cell&#xff0c;它由不同…