没有思考过 Embedding,不足以谈 AI

在当今的人工智能(AI)领域,Embedding 是一个不可或缺的概念。如果你没有深入理解过 Embedding,那么就无法真正掌握 AI 的精髓。接下来,我们将深入探讨 Embedding 的基本概念。

1. Embedding的基本概念

1.1 什么是 Embedding

Embedding 是一种将高维数据映射到低维空间的技术。简单来说,它就是把复杂的、难以处理的数据转换成便于计算的形式。举个例子,假设我们有一个包含上千个词汇的文本数据,每个词汇可以看作是一个维度,这样的数据在计算机处理时会变得非常复杂。而 Embedding 则是通过数学模型将这些高维数据映射到一个低维空间,使得计算更加高效。

1.2 Embedding 在 AI 中的作用

在 AI 中,Embedding 扮演着极其重要的角色。首先,它能大大降低数据的维度,从而提高计算效率。其次,通过 Embedding,AI 模型能够捕捉到数据之间的隐含关系和结构。例如,在自然语言处理(NLP)中,词向量(word embeddings)能够将语义相近的词汇映射到相邻的向量空间中,这样模型就可以更好地理解和处理语言数据。

1.3 常见的 Embedding 类型

根据不同的应用场景,Embedding 的实现方法也有所不同。常见的 Embedding 类型包括:

  1. 词向量(Word Embedding):这是最常见的一种 Embedding,主要用于 NLP 领域。通过词向量模型,如 Word2Vec 和 GloVe,可以将词汇映射到一个固定维度的向量空间中,从而捕捉到词汇之间的语义关系
  2. 图像嵌入(Image Embedding):在计算机视觉(CV)领域,图像嵌入技术可以将图像数据转换为向量,从而用于图像分类、对象检测等任务
  3. 用户嵌入(User Embedding):在推荐系统中,通过对用户行为数据进行嵌入,可以有效地进行个性化推荐

2. Embedding的数学基础

Embedding 的有效实现离不开坚实的数学基础。为了更好地理解 Embedding 的工作原理,我们需要了解一些关键的数学概念。

2.1 向量空间

向量空间是线性代数中的一个基本概念,也是 Embedding 的核心。向量空间由一组向量组成,这些向量可以进行加法和数乘运算。在 Embedding 中,我们将数据点表示为向量,并将它们映射到一个高维或低维的向量空间中。这样,通过在向量空间中的操作,我们可以捕捉到数据点之间的关系和结构。

(by 3Blue1Brown)

2.2 线性代数基础

线性代数是 Embedding 技术的基础,以下是一些关键的线性代数概念:

  • 矩阵:矩阵是二维数组,常用于表示和操作向量。矩阵乘法是 Embedding 技术中的重要操作,例如在训练词向量模型时,常使用矩阵乘法来计算词汇之间的关系
  • 特征值和特征向量:特征值和特征向量是描述矩阵性质的重要工具。在 Embedding 中,特征值分解和奇异值分解(SVD)等技术常用于降维和优化模型
  • 内积和外积:内积用于衡量向量之间的相似性,而外积用于构建更高维度的矩阵,这两者在 Embedding 技术中都有广泛应用

2.3 高维数据的处理

处理高维数据是 Embedding 技术的一个重要挑战。高维数据通常包含大量冗余信息,计算复杂度也较高。为了高效地处理高维数据,我们通常采用以下方法:

  • 降维技术:降维技术,如主成分分析(PCA)和 t-SNE,可以有效地将高维数据映射到低维空间,保留数据的主要特征
  • 正则化:在模型训练过程中,通过添加正则化项,可以防止过拟合,提高模型的泛化能力
  • 采样技术:对于大规模数据集,可以采用负采样(Negative Sampling)等技术,以减少计算量,提高训练速度

通过理解向量空间、线性代数基础和高维数据处理方法,我们可以更好地掌握 Embedding 的数学原理

3. Embedding的实现方法

Embedding 的实现方法多种多样,具体选择取决于应用场景和需求。下面,我们将介绍几种常见的 Embedding 实现方法。

3.1 词向量模型(Word2Vec, GloVe)

词向量模型是自然语言处理(NLP)中的重要工具,它们可以将词汇映射到一个固定维度的向量空间中,捕捉到词汇之间的语义关系。

  • Word2Vec:这是由 Google 提出的一个词向量模型,主要有两种训练方法:连续词袋模型(CBOW)和跳跃模型(Skip-gram)。CBOW 通过预测上下文词汇来训练词向量,而 Skip-gram 则通过预测给定词汇的上下文来训练。Word2Vec 模型的优点是训练速度快,且能有效捕捉到词汇的语义关系
  • GloVe:全局向量(GloVe)是由斯坦福大学提出的另一种词向量模型。它通过构建词汇的共现矩阵,并对矩阵进行优化来生成词向量。与 Word2Vec 不同,GloVe 结合了全局统计信息,使得生成的词向量更加稳定和准确

3.2 神经网络嵌入(Neural Embedding)

神经网络嵌入是利用深度学习模型实现 Embedding 的一种方法,适用于多种数据类型,包括文本、图像和图结构数据。

  • 神经网络词嵌入:在 NLP 中,除了 Word2Vec 和 GloVe,基于神经网络的嵌入方法如 BERT 和 GPT 也广泛应用。BERT 通过双向 Transformer 模型进行预训练,可以捕捉到上下文的双向依赖关系。而 GPT 则通过自回归模型进行训练,生成高质量的文本嵌入
  • 卷积神经网络(CNN)嵌入:在计算机视觉(CV)中,卷积神经网络(CNN)被广泛用于图像嵌入。通过多层卷积操作,CNN 可以提取图像的特征,并将其映射到一个低维向量空间中
  • 图神经网络(GNN)嵌入:对于图结构数据,图神经网络(GNN)通过聚合节点及其邻居的特征,实现图数据的嵌入。GNN 能够捕捉图中节点之间的复杂关系,广泛应用于社交网络分析、推荐系统等领域

3.3 其他 Embedding 技术

除了上述方法,还有一些其他的 Embedding 技术,适用于特定的应用场景:

  • 自编码器(Autoencoder):自编码器是一种无监督学习模型,通过构建输入数据的压缩表示,实现在低维空间中的嵌入。自编码器在降维和特征提取方面有良好的表现,适用于多种数据类型
  • 潜在语义分析(LSA)和潜在狄利克雷分配(LDA):这两种方法主要用于文本数据的主题建模。LSA 通过奇异值分解(SVD)对词汇-文档矩阵进行降维,而 LDA 通过贝叶斯推断来发现文本中的潜在主题
  • 词嵌入的组合方法:在实际应用中,常常结合多种嵌入方法,以提高模型的表现。例如,将 Word2Vec 和 GloVe 生成的词向量进行组合,或将自编码器生成的嵌入与神经网络嵌入结合使用

4. Embedding的训练与优化

要实现高效的 Embedding,训练与优化过程至关重要。以下是 Embedding 训练与优化的关键步骤。

4.1 数据预处理

数据预处理是 Embedding 训练的第一步,良好的预处理可以显著提高模型的性能。

  • 文本数据的预处理:包括分词、去除停用词、词干提取和词形还原等。分词是将文本拆分成独立的词汇,这一步骤在 NLP 中尤为重要。去除停用词是指删除一些频繁出现但没有实际意义的词汇,如“的”、“是”、“在”等。词干提取和词形还原则是将词汇转换为其基础形式,以减少词汇量
  • 图像数据的预处理:包括图像归一化、尺寸调整和数据增强。图像归一化是将像素值归一化到一定范围内,提高模型的训练效果。尺寸调整是将图像缩放到统一尺寸,以适应模型输入的要求。数据增强则是通过图像旋转、翻转、裁剪等操作,增加训练数据的多样性
  • 图数据的预处理:包括图节点和边的特征提取。对于图结构数据,需要提取节点和边的特征,并将其转换为模型可以处理的格式。例如,在社交网络中,可以提取用户的个人信息和社交关系作为特征

4.2 模型训练

模型训练是 Embedding 实现的核心步骤,选择合适的训练方法和优化算法至关重要。

  • 监督学习:在有标签数据的情况下,可以使用监督学习方法进行 Embedding 训练。例如,在文本分类任务中,可以将分类标签作为监督信号,通过神经网络模型进行训练,生成词向量
  • 无监督学习:在无标签数据的情况下,可以使用无监督学习方法进行 Embedding 训练。常见的方法包括自编码器和聚类算法。自编码器通过重构输入数据,实现数据的嵌入表示。聚类算法则通过将数据点分组,生成每个数据点的嵌入向量
  • 半监督学习:在部分有标签数据的情况下,可以使用半监督学习方法进行 Embedding 训练。通过结合有标签和无标签数据,可以提高模型的泛化能力。例如,在图嵌入中,可以使用 GraphSAGE 等半监督学习方法,通过聚合节点及其邻居的特征,生成节点嵌入

4.3 模型评估与优化

模型评估与优化是确保 Embedding 质量的关键步骤,通过有效的评估和优化,可以提升模型的性能。

  • 模型评估:常见的评估指标包括准确率、精确率、召回率和 F1 分数。在 NLP 任务中,可以使用词相似度、词类比和下游任务性能等指标评估词向量的质量。在图嵌入任务中,可以使用节点分类、链接预测等指标评估嵌入的效果
  • 超参数优化:超参数对模型的性能有显著影响,常见的优化方法包括网格搜索和随机搜索。通过调整学习率、批次大小、嵌入维度等超参数,可以找到最优的模型配置
  • 正则化技术:正则化技术可以防止模型过拟合,提高泛化能力。常见的正则化方法包括 L1 和 L2 正则化、Dropout 和早停(Early Stopping)。在 Embedding 训练中,加入正则化项可以约束模型参数,防止过拟合

通过数据预处理、模型训练和模型评估与优化,我们可以实现高质量的 Embedding

5. Embedding的应用场景

Embedding 技术在不同领域中有广泛的应用,它们能够帮助我们高效地处理和分析复杂的数据。以下是几种主要的应用场景。

5.1 自然语言处理(NLP)

在自然语言处理(NLP)领域,Embedding 技术是至关重要的,它能够将文本数据转换为计算机可以处理的向量形式,捕捉到词汇和短语之间的语义关系。

  • 文本分类:通过词向量(如 Word2Vec 或 GloVe),可以将文本中的每个词映射到一个向量空间中,再通过平均或其他方法生成文本的向量表示,进而用于分类任务。经典的应用包括垃圾邮件过滤、情感分析和主题分类等
  • 机器翻译:在机器翻译任务中,Embedding 技术用于将源语言和目标语言的词汇转换为向量表示,从而通过神经网络模型进行翻译。典型的模型包括基于 RNN 的序列到序列模型和基于 Transformer 的注意力机制模型
  • 问答系统:问答系统需要理解用户提出的问题并从知识库中找到答案。通过词向量或句子向量,可以将问题和候选答案表示为向量,并通过计算相似度来匹配最合适的答案

5.2 计算机视觉(CV)

在计算机视觉(CV)领域,Embedding 技术主要用于将图像数据转换为低维向量表示,以便进行各种图像分析任务。

  • 图像分类:通过卷积神经网络(CNN),可以将图像嵌入到一个低维向量空间中,从而实现图像分类。经典的 CNN 模型包括 AlexNet、VGG 和 ResNet 等,这些模型在图像分类任务中表现出色
  • 对象检测:对象检测任务需要在图像中定位并分类多个对象。通过将图像分割成小区域,并对每个区域进行嵌入,可以实现对象检测。典型的模型包括 R-CNN、YOLO 和 SSD 等
  • 图像检索:在图像检索任务中,通过将查询图像和数据库中的图像嵌入到相同的向量空间中,可以通过计算向量相似度来找到最相似的图像。这个过程通常涉及图像特征提取和度量学习

5.3 推荐系统

推荐系统通过分析用户行为数据,为用户提供个性化的推荐。Embedding 技术在推荐系统中起着关键作用,能够将用户和物品的特征表示为向量,从而进行高效的推荐。

  • 协同过滤:在协同过滤方法中,通过将用户和物品嵌入到一个共同的向量空间中,可以根据用户的历史行为数据,预测用户对未评分物品的喜好。矩阵分解(如 SVD)和神经协同过滤是常见的实现方法
  • 内容推荐:在内容推荐方法中,通过将用户特征和内容特征嵌入到向量空间中,可以根据内容的相似性,为用户推荐感兴趣的内容。典型的应用包括新闻推荐、视频推荐和商品推荐
  • 混合推荐:混合推荐方法结合了协同过滤和内容推荐的优点,通过多种 Embedding 技术,将用户和物品的特征进行综合分析,以提高推荐的准确性和多样性

通过 Embedding 技术在自然语言处理、计算机视觉和推荐系统中的应用,我们可以大大提升数据分析和处理的效率和效果

6. 经典Embedding案例分析

为了更好地理解 Embedding 的实际应用,我们将通过几个经典案例来详细分析 Embedding 技术的实现和效果。

6.1 Word2Vec案例

Word2Vec 是由 Google 提出的词向量模型,通过将词汇嵌入到一个高维向量空间中,捕捉到词汇之间的语义关系。Word2Vec 有两种主要的训练方法:连续词袋模型(CBOW)和跳跃模型(Skip-gram)。

  • 连续词袋模型(CBOW):CBOW 模型通过预测给定上下文中间的词汇来训练词向量。假设我们有一个句子 “The quick brown fox jumps over the lazy dog”,CBOW 模型会用上下文 “The quick brown fox” 和 “over the lazy dog” 来预测中心词 “jumps”
  • 跳跃模型(Skip-gram):Skip-gram 模型通过预测给定词汇的上下文来训练词向量。以同一个句子为例,Skip-gram 模型会用中心词 “jumps” 来预测上下文 “The quick brown fox” 和 “over the lazy dog”

效果:通过 Word2Vec 训练的词向量,可以有效地捕捉到词汇之间的语义关系。例如,词向量之间的向量运算可以表示语义关系,如

这种语义操作在很多 NLP 任务中都表现出了极大的优势。

6.2 GloVe案例

GloVe(全局向量)是斯坦福大学提出的一种词向量模型,它通过构建词汇的共现矩阵,并对矩阵进行优化来生成词向量。与 Word2Vec 不同,GloVe 结合了全局统计信息,使得生成的词向量更加稳定和准确。

  • 共现矩阵:GloVe 首先构建一个词汇的共现矩阵,矩阵中的每个元素表示两个词汇在一个固定窗口大小内共同出现的次数。例如,如果我们有一个句子 “The quick brown fox jumps over the lazy dog”,那么词汇 “quick” 和 “brown” 之间的共现次数就是 1
  • 矩阵优化:GloVe 通过对共现矩阵进行优化,使得词向量能够更好地表示词汇之间的语义关系。优化过程通过最小化一个损失函数,使得词向量能够尽可能准确地表示共现矩阵中的统计信息

效果:通过 GloVe 训练的词向量,同样能够有效地捕捉到词汇之间的语义关系,并且在某些任务中表现得比 Word2Vec 更加稳定和准确。例如,在词类比任务中,GloVe 通常能够给出更符合语义的结果。

6.3 BERT案例

BERT(双向编码器表示的 Transformer)是 Google 提出的基于 Transformer 模型的词向量表示方法,它通过双向 Transformer 模型进行预训练,能够捕捉到词汇的上下文语义信息。

  • 双向 Transformer:与传统的单向语言模型不同,BERT 通过双向 Transformer 模型进行训练,即同时考虑词汇的前后文信息。这样,BERT 能够更好地捕捉到词汇的上下文语义关系。例如,在句子 “The bank can guarantee deposits will cover future tuition costs because it invests in adjustable-rate mortgage securities” 中,BERT 能够根据上下文信息区分 “bank” 是指金融机构还是河岸
  • 预训练和微调:BERT 首先在大规模语料库上进行预训练,学习词汇的通用语义表示。然后,在具体任务上进行微调,使得模型能够适应特定任务的需求

效果:BERT 在多个 NLP 任务中取得了显著的效果提升,包括问答系统、文本分类和命名实体识别等。BERT 的预训练模型能够生成高质量的词向量表示,显著提高了下游任务的性能。

通过 Word2Vec、GloVe 和 BERT 的案例分析,我们可以看到 Embedding 技术在不同 NLP 任务中的实际应用效果。接下来,我们将探讨 Embedding 与其他 AI 技术的关系。

7. Embedding与其他AI技术的关系

Embedding 技术与其他 AI 技术密切相关,通过结合不同的 AI 技术,能够实现更强大的功能和性能。下面我们将探讨 Embedding 与深度学习、强化学习和迁移学习的关系。

7.1 Embedding与深度学习

深度学习(Deep Learning)是实现 Embedding 技术的重要方法之一,许多现代 Embedding 技术都依赖于深度神经网络模型。

  • 卷积神经网络(CNN):在计算机视觉(CV)领域,CNN 被广泛用于图像嵌入。通过多层卷积操作,CNN 可以提取图像的特征,并将其映射到一个低维向量空间中。这些嵌入向量可以用于图像分类、对象检测和图像检索等任务
  • 循环神经网络(RNN):在自然语言处理(NLP)领域,RNN 尤其是长短期记忆网络(LSTM)和门控循环单元(GRU),被广泛用于序列数据的嵌入。通过处理序列数据,RNN 可以捕捉到时间序列中的依赖关系,将序列嵌入到低维向量空间中
  • Transformer:Transformer 模型在 NLP 中取得了巨大的成功,尤其是 BERT 和 GPT 等预训练模型。Transformer 通过自注意力机制,可以有效地捕捉到序列数据中的长距离依赖关系,实现高质量的词向量嵌入

7.2 Embedding与强化学习

强化学习(Reinforcement Learning,RL)是一种通过与环境交互来学习策略的机器学习方法。Embedding 技术在强化学习中也有广泛应用,尤其是在状态表示和策略学习中。

  • 状态表示:在强化学习中,状态表示是一个关键问题。通过 Embedding 技术,可以将复杂的高维状态空间映射到一个低维向量空间中,使得状态表示更加紧凑和有效。例如,在机器人控制任务中,可以通过图像嵌入技术,将视觉输入表示为低维向量,从而提高策略学习的效率
  • 策略嵌入:强化学习中的策略可以通过嵌入技术进行表示和优化。通过策略嵌入,可以将策略映射到一个连续的向量空间中,从而进行优化和改进。例如,在推荐系统中,可以通过策略嵌入技术,学习用户的个性化推荐策略,提高推荐的准确性和多样性

7.3 Embedding与迁移学习

迁移学习(Transfer Learning)是一种通过将已学到的知识从一个任务迁移到另一个任务的机器学习方法。Embedding 技术在迁移学习中起着重要作用,尤其是在预训练模型的应用中。

  • 预训练模型:预训练模型是迁移学习的核心方法,通过在大规模数据集上进行预训练,学习通用的特征表示。然后,在具体任务上进行微调,使得模型能够适应特定任务的需求。BERT 和 GPT 就是典型的预训练模型,通过预训练生成高质量的词向量嵌入,再在下游任务中进行微调
  • 特征迁移:通过 Embedding 技术,可以将预训练模型生成的特征向量迁移到新的任务中。例如,在图像分类任务中,可以将预训练的 CNN 模型生成的图像嵌入,迁移到新的图像分类任务中,提高训练效率和模型性能

通过结合深度学习、强化学习和迁移学习,Embedding 技术能够实现更强大的功能和性能

8. 如何选择合适的Embedding技术

在实际应用中,选择合适的 Embedding 技术对于模型的性能和效果至关重要。以下是一些选择 Embedding 技术的指南,根据数据类型、应用场景和计算资源进行选择。

8.1 根据数据类型选择

不同的数据类型适合不同的 Embedding 技术,选择合适的技术可以提高模型的性能。

  • 文本数据:对于文本数据,常用的词向量模型包括 Word2Vec、GloVe 和基于 Transformer 的预训练模型(如 BERT、GPT)。如果任务是简单的词汇嵌入,Word2Vec 和 GloVe 是不错的选择。如果需要捕捉复杂的上下文关系,基于 Transformer 的模型则更为适用
  • 图像数据:对于图像数据,卷积神经网络(CNN)是最常用的嵌入方法。经典的 CNN 模型如 AlexNet、VGG、ResNet 等,都能够有效地将图像嵌入到低维向量空间中。如果需要处理大规模图像数据,可以考虑使用预训练的 CNN 模型,并在具体任务上进行微调
  • 图结构数据:对于图结构数据,图神经网络(GNN)是最常用的嵌入方法。GNN 能够捕捉图中节点之间的复杂关系,适用于社交网络分析、推荐系统等任务。常见的 GNN 模型包括 GraphSAGE、GAT 和 GCN

8.2 根据应用场景选择

不同的应用场景对嵌入的要求不同,选择适合应用场景的嵌入技术可以提高任务的完成效果。

  • 自然语言处理(NLP):在 NLP 中,如果任务是文本分类、情感分析等,可以使用 Word2Vec 或 GloVe 等简单的词向量模型。如果任务是问答系统、机器翻译等复杂任务,基于 Transformer 的模型(如 BERT、GPT)更为适用
  • 计算机视觉(CV):在 CV 中,如果任务是图像分类、对象检测,可以使用经典的 CNN 模型。如果需要处理图像检索任务,可以结合度量学习(如对比损失)来训练图像嵌入
  • 推荐系统:在推荐系统中,如果任务是协同过滤,可以使用矩阵分解技术(如 SVD)或神经协同过滤。如果需要结合内容推荐,可以使用基于文本或图像的嵌入技术,并将它们与协同过滤结合

8.3 根据计算资源选择

计算资源的限制也会影响嵌入技术的选择。在资源有限的情况下,选择计算效率高的嵌入技术可以提高模型的实用性。

  • 轻量级模型:如果计算资源有限,可以选择计算效率高的轻量级模型。例如,在 NLP 任务中,可以使用较小的词向量模型(如 Word2Vec)而不是复杂的 Transformer 模型。在 CV 任务中,可以选择较小的 CNN 模型(如 MobileNet)而不是大型的 ResNet
  • 分布式训练:在大规模数据和高计算资源的情况下,可以采用分布式训练技术,提高模型训练的效率。例如,在训练大型预训练模型(如 BERT、GPT)时,可以使用分布式计算框架(如 TensorFlow、PyTorch)进行分布式训练
  • 云计算和硬件加速:如果需要处理超大规模数据,可以借助云计算平台(如 AWS、Google Cloud)和硬件加速技术(如 GPU、TPU)来提高计算效率和模型性能

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/752460.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ET实现游戏中邮件系统逻辑思路(服务端)

ET是一个游戏框架,用的编程语言是C#,游戏引擎是Unity,框架作者:熊猫 ET社区 在游戏中我们通常都会看到有邮件系统,邮件系统的作用有给玩家通知、发放奖励等 下面小编使用ET框架带大家看一下邮件系统的一种实现方…

远程过程调用RPC实现原理

Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~ 💥💥个人主页:奋斗的小羊 💥💥所属专栏:C语言 🚀本系列文章为个人学习…

深度挖掘数据资产,洞察业务先机:利用先进的数据分析技术,精准把握市场趋势,洞悉客户需求,为业务决策提供有力支持,实现持续增长与创新

在当今日益激烈的商业竞争环境中,企业想要实现持续增长与创新,必须深入挖掘和有效运用自身的数据资产。数据不仅是企业运营过程中的副产品,更是洞察市场趋势、理解客户需求、优化业务决策的重要资源。本文将探讨如何通过利用先进的数据分析技…

多行业预约门店服务小程序源码系统 支持多门店预约 带完整的安装代码包以及搭建教程

系统概述 该系统基于先进的云计算和大数据技术,采用模块化设计,具有高度的可扩展性和可定制性。无论是餐饮、美容美发、健身房还是其他服务行业,都可以通过该系统轻松实现多门店预约功能。同时,我们还提供了丰富的接口和插件&…

stylelint 配置

1.vscode 安装插件Stylelint 2.项目安装插件 pnpm i stylelint stylelint-config-standard stylelint-config-recommended-scss stylelint-config-recommended-vue postcss postcss-html postcss-scss stylelint-config-recess-order stylelint-config-html -D 依赖 说明 备…

如何判断一个Repo是否是Private还是Internal?

Github的Repository分为三种类型,主要是用于决定谁可以访问、查看和克隆该仓库。GitHub 提供了几种不同的可见性选项,包括 Private、Public 和 Internal。 Private 只有仓库的拥有者和被明确邀请为协作者(Collaborator)的用户才能…

VMware虚拟机移植保姆级教程

文章目录 前言:一、打包与备份二、VMware移植1. 文件介绍2. 移植过程总结:前言: 前几日对电脑做了一个大的更新升级,不仅将硬件进行了升级,还对电脑的软件进行了升级也就是我从Win10今家庭版升级到Win11专业版啦,之前没有升级是因为数据量很多,怕升级后找不到自己需要的…

Windows和Linux C++判断磁盘空间是否充足

基本是由百度Ai写代码生成的,记录一下。实现此功能需要调用系统的API函数。 对于Windows,可调用函数GetDiskFreeSpaceEx,使用该函数需要包含头文件windows.h。该函数的原型: 它的四个参数: lpDirectoryName&#xff0…

基于SpringBoot养老院管理系统设计和实现(源码+LW+调试文档+讲解等)

💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 🌟文末获取源码数据库🌟感兴趣的可以先收藏起来,还…

基于改进天鹰优化算法(IAO)优化RBF神经网络数据回归预测 (IAO-RBF)的数据回归预测(多输入多输出)

改进天鹰优化算法(IAO)见:【智能优化算法】改进的AO算法(IAO)-CSDN博客 代码原理 基于改进天鹰优化算法(IAO)优化RBF神经网络数据回归预测(IAO-RBF)的多输入多输出(MIMO)数据回归预测&#xf…

CVPR24已开源:刷新监督学习SOTA,无监督多目标跟踪时代来临!

论文标题: Matching Anything by Segmenting Anything 论文作者: Siyuan Li, Lei Ke, Martin Danelljan, Luigi Piccinelli, Mattia Segu, Luc Van Gool, Fisher Yu 导读: 在计算机视觉的征途中,多目标跟踪(MOT&…

Centos安装redis(附:图形化管理工具)

第一步:下载redis wget http://download.redis.io/releases/redis-6.2.7.tar.gz 第二步:解压 tar zxvf redis-6.2.7.tar.gz 第三步:安装依赖环境 yum -y install gcc-c第四步:安装依赖环境 make install第五步:修…

开源项目-商城管理系统

哈喽,大家好,今天主要给大家带来一个开源项目-商城管理系统 商城管理系统分前后端两部分。前端主要有商品展示,我的订单,个人中心等内容;后端的主要功能包括产品管理,门店管理,会员管理&#x…

C++之STL(十)

1、适配器 2、函数适配器 #include <iostream> using namespace std;#include <algorithm> #include <vector> #include <functional>bool isOdd(int n) {return n % 2 1; } int main() {int a[] {1, 2, 3, 4, 5};vector <int> v(a, a 5);cou…

外贸人该怎么进行客户分类,怎么找出那20%的重要客户?

更多外贸干货及开发见客户的方法&#xff0c;尽在微信【千千外贸干货】 我们往往只是知道这个规则&#xff0c;却不懂怎么去进行客户分类&#xff0c;怎么找出这20%的重要客户&#xff1f; 具体而言&#xff0c;有8个指标来衡量&#xff1a; 1 利润率高 不以盈利为目的的企业…

使用python基于经纬度获取高德地图定位地址【逆地址解析】

一、高德地图api申请 1. 高德开放平台注册&#xff0c;登录 进入网址&#xff1a;高德开放平台 | 高德地图API 注册 -- 支付宝扫码认证 -- 完善个人信息 -- 登录 2. 申请API &#xff08;1&#xff09;点击头像 -- 应用管理 -- 我的应用 -- 创建新应用 &#xff08;2&…

对于恒指你了解够多吗?

不少人进入股市选择投资哪种哪种期货&#xff0c;都是因为听别人说利润大&#xff0c;于是也不管三七二十一&#xff0c;就盲目的跟着投资了&#xff0c;认为所有的期货都应该应用一样的操作办法&#xff0c;随机应变就是了&#xff0c;其实不然&#xff0c;每种期货都有着自己…

springboot3.x的优势在哪里,我们是否要选择springboot3.x

Spring Boot 3.x的优势主要体现在以下几个方面&#xff0c;这些优势使得它成为了一个值得考虑的选择&#xff1a; Java 17支持&#xff1a;Spring Boot 3.x 支持 Java 17&#xff0c;这是一个长期支持&#xff08;LTS&#xff09;版本&#xff0c;带来了许多新特性和性能改进。…

从ChatGPT代码执行逃逸到LLMs应用安全思考

摘要 11月7日OpenAI发布会后&#xff0c;GPT-4的最新更新为用户带来了更加便捷的功能&#xff0c;包括Python代码解释器、网络内容浏览和图像生成能力。这些创新不仅开辟了人工智能应用的新境界&#xff0c;也展示了GPT-4在处理复杂任务方面的惊人能力。然而&#xff0c;与所有…

亚马逊云科技快速上手训练营:模块一

课程目标 初步了解云平台与本地环境的差异初步了解亚马逊云科技平台的基础设施和部分核心服务初步了解亚马逊云科技平台上的弹性高可用架构初步了解亚马逊云科技平台上的架构设计准则初步了解本地架构迁移上云的基本知识 1.亚马逊云科技平台简介 1.1 什么是云计算&#xff1…