昇思25天学习打卡营第10天|基于MindSpore的GPT2文本摘要

学AI还能赢奖品?每天30分钟,25天打通AI任督二脉 (qq.com)

基于MindSpore的GPT2文本摘要

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
!pip install tokenizers==0.15.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1`
!pip install mindnlp

数据集加载与处理

  • 数据集加载

    本次实验使用的是nlpcc2017摘要数据,内容为新闻正文及其摘要,总计50000个样本。

from mindnlp.utils import http_get

# download dataset
url = 'https://download.mindspore.cn/toolkits/mindnlp/dataset/text_generation/nlpcc2017/train_with_summ.txt'
path = http_get(url, './')
from mindspore.dataset import TextFileDataset

# load dataset
dataset = TextFileDataset(str(path), shuffle=False)
dataset.get_dataset_size()
# split into training and testing dataset
train_dataset, test_dataset = dataset.split([0.9, 0.1], randomize=False)

使用http_get函数从指定URL下载数据集。

使用TextFileDataset加载数据集,并将其分割为训练集和测试集。

  • 数据预处理

    原始数据格式:

    article: [CLS] article_context [SEP]
    summary: [CLS] summary_context [SEP]
    

    预处理后的数据格式:

    [CLS] article_context [SEP] summary_context [SEP]
import json
import numpy as np

# preprocess dataset
def process_dataset(dataset, tokenizer, batch_size=6, max_seq_len=1024, shuffle=False):
    def read_map(text):
        data = json.loads(text.tobytes())
        return np.array(data['article']), np.array(data['summarization'])

    def merge_and_pad(article, summary):
        # tokenization
        # pad to max_seq_length, only truncate the article
        tokenized = tokenizer(text=article, text_pair=summary,
                              padding='max_length', truncation='only_first', max_length=max_seq_len)
        return tokenized['input_ids'], tokenized['input_ids']
    
    dataset = dataset.map(read_map, 'text', ['article', 'summary'])
    # change column names to input_ids and labels for the following training
    dataset = dataset.map(merge_and_pad, ['article', 'summary'], ['input_ids', 'labels'])

    dataset = dataset.batch(batch_size)
    if shuffle:
        dataset = dataset.shuffle(batch_size)

    return dataset

因GPT2无中文的tokenizer,我们使用BertTokenizer替代。

from mindnlp.transformers import BertTokenizer

# We use BertTokenizer for tokenizing chinese context.
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
len(tokenizer)
train_dataset = process_dataset(train_dataset, tokenizer, batch_size=4)
next(train_dataset.create_tuple_iterator())

定义process_dataset函数来预处理数据集,包括读取数据、进行分词和填充等操作。

采用BertTokenizer进行中文文本的预处理。

模型构建

  • 构建GPT2ForSummarization模型,注意shift right的操作。
from mindspore import ops
from mindnlp.transformers import GPT2LMHeadModel

class GPT2ForSummarization(GPT2LMHeadModel):
    def construct(
        self,
        input_ids = None,
        attention_mask = None,
        labels = None,
    ):
        outputs = super().construct(input_ids=input_ids, attention_mask=attention_mask)
        shift_logits = outputs.logits[..., :-1, :]
        shift_labels = labels[..., 1:]
        # Flatten the tokens
        loss = ops.cross_entropy(shift_logits.view(-1, shift_logits.shape[-1]), shift_labels.view(-1), ignore_index=tokenizer.pad_token_id)
        return loss

创建GPT2ForSummarization类,继承自GPT2LMHeadModel,用于文本摘要任务。

construct方法中,实现标签的右移操作,匹配序列到序列的需求。

  • 动态学习率
from mindspore import ops
from mindspore.nn.learning_rate_schedule import LearningRateSchedule

class LinearWithWarmUp(LearningRateSchedule):
    """
    Warmup-decay learning rate.
    """
    def __init__(self, learning_rate, num_warmup_steps, num_training_steps):
        super().__init__()
        self.learning_rate = learning_rate
        self.num_warmup_steps = num_warmup_steps
        self.num_training_steps = num_training_steps

    def construct(self, global_step):
        if global_step < self.num_warmup_steps:
            return global_step / float(max(1, self.num_warmup_steps)) * self.learning_rate
        return ops.maximum(
            0.0, (self.num_training_steps - global_step) / (max(1, self.num_training_steps - self.num_warmup_steps))
        ) * self.learning_rate

定义LinearWithWarmUp类,实现线性预热衰减学习率策略,在训练初期逐步增加学习率以帮助模型快速收敛,随后在训练后期逐渐降低学习率以进行精细调整。

模型训练

num_epochs = 1
warmup_steps = 2000
learning_rate = 1.5e-4

num_training_steps = num_epochs * train_dataset.get_dataset_size()

from mindspore import nn
from mindnlp.transformers import GPT2Config, GPT2LMHeadModel

config = GPT2Config(vocab_size=len(tokenizer))
model = GPT2ForSummarization(config)

lr_scheduler = LinearWithWarmUp(learning_rate=learning_rate, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps)
optimizer = nn.AdamWeightDecay(model.trainable_params(), learning_rate=lr_scheduler)

# 记录模型参数数量
print('number of model parameters: {}'.format(model.num_parameters()))
from mindnlp._legacy.engine import Trainer
from mindnlp._legacy.engine.callbacks import CheckpointCallback

ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt2_summarization',
                                epochs=1, keep_checkpoint_max=2)

trainer = Trainer(network=model, train_dataset=train_dataset,
                  epochs=1, optimizer=optimizer, callbacks=ckpoint_cb)
trainer.set_amp(level='O1')  # 开启混合精度

注:建议使用较高规格的算力,训练时间较长

trainer.run(tgt_columns="labels")

设置训练参数,如学习率、预热步数和总训练步数。

使用Trainer进行模型训练,设置检查点回调保存模型。

原数据集50000样本,训练时间较长,实际用了10000样本减少训练时间。

没有尝试静态图mindnlp/mindnlp/transformers/models/gpt2 · mindnlp · GitHub

模型推理

数据处理,将向量数据变为中文数据

def process_test_dataset(dataset, tokenizer, batch_size=1, max_seq_len=1024, max_summary_len=100):
    def read_map(text):
        data = json.loads(text.tobytes())
        return np.array(data['article']), np.array(data['summarization'])

    def pad(article):
        tokenized = tokenizer(text=article, truncation=True, max_length=max_seq_len-max_summary_len)
        return tokenized['input_ids']

    dataset = dataset.map(read_map, 'text', ['article', 'summary'])
    dataset = dataset.map(pad, 'article', ['input_ids'])
    
    dataset = dataset.batch(batch_size)

    return dataset
test_dataset = process_test_dataset(test_dataset, tokenizer, batch_size=1)
print(next(test_dataset.create_tuple_iterator(output_numpy=True)))
model = GPT2LMHeadModel.from_pretrained('./checkpoint/gpt2_summarization_epoch_0.ckpt', config=config)
model.set_train(False)
model.config.eos_token_id = model.config.sep_token_id
i = 0
for (input_ids, raw_summary) in test_dataset.create_tuple_iterator():
    output_ids = model.generate(input_ids, max_new_tokens=50, num_beams=5, no_repeat_ngram_size=2)
    output_text = tokenizer.decode(output_ids[0].tolist())
    print(output_text)
    i += 1
    if i == 1:
        break

定义process_test_dataset函数来处理测试数据集。

加载训练好的模型,使用generate方法生成摘要。

代码基于MindSpore的GPT2文本摘要模型。首先,导入了所需的库和模块,下载并加载数据集。接着,对数据集进行预处理,包括分词、填充等操作。构建GPT2ForSummarization模型,模型继承自GPT2LMHeadModel,重写construct方法。模型训练部分,设置学习率调度器、优化器和检查点回调,使用Trainer进行训练。最后,对测试数据集进行处理,使用训练好的模型进行推理,输出摘要结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/751747.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Duix - 硅基数字人SDK

简介 Introduction DUIX(Dialogue User Interface System)是硅基智能打造的AI数字人智能交互平台。通过将数字人交互能力开源,开发者可自行接入多方大模型、语音识别(ASR)、语音合成(TTS)能力,实现数字人实时交互,并在Android和iOS多终端一键部署,让每个开发者可轻松…

2、逻辑回归

1. 为什么要叫逻辑回归? 逻辑回归模型的名称可能会引起一些混淆,因为它名字中包含了"回归"这个词,但实际上它是一种用于解决分类问题的模型,而不是回归问题。 逻辑回归最初是从线性回归模型演变而来的。线性回归用于预测连续的数值输出,逻辑回归则是在线性回归…

shell 脚本中断问题定位

shell 脚本中断问题定位 1 介绍2 定位方法2.1 查看脚本的退出状态码2.2 查看系统日志文件2.3 使用journalctl工具2.4 使用dmesg命令2.5 检查脚本自身的日志记录2.6 使用图形界面工具2.7 配置和使用集中式日志管理系统 参考 1 介绍 shell 脚本运行&#xff0c;一段时间后&#…

SQL注入和防御方法

SQL注入是一种攻击手段&#xff0c;通过在SQL查询中插入恶意SQL代码片段&#xff0c;欺骗数据库服务器执行非授权的数据库操作。这种攻击可能导致数据泄露、篡改或丢失。为了防范SQL注入&#xff0c;可以采取以下几种策略&#xff1a; 1.使用预编译语句&#xff08;Prepared St…

戴尔笔记本重装系统?笔记本卡顿失灵?一键重装系统!

随着科技的快速发展&#xff0c;笔记本电脑已成为我们日常生活和工作中不可或缺的工具。然而&#xff0c;随着时间的推移&#xff0c;笔记本可能会遇到各种问题&#xff0c;如系统卡顿、失灵等。这时&#xff0c;重装系统往往是一个有效的解决方案。本文将详细介绍如何在戴尔笔…

stm32-USART通信

什么是usart&#xff1f;和其他通信又有什么区别&#xff1f; 如下图&#xff1a; USART是一种用于串行通信的设备&#xff0c;可以在同步和异步模式下工作。 usart有两根数据线&#xff0c;一根发送线&#xff08;tx&#xff09;一根接收线&#xff08;rx&#xff09;&#x…

2、Redis持久化与高可用架构

一、Redis 持久化 RDB 快照&#xff08;Snapshot&#xff09; 基本概念&#xff1a;RDB&#xff08;Redis DataBase&#xff09;快照是将 Redis 内存中的数据在某个时间点保存到磁盘中的一种持久化方式&#xff0c;默认保存到 dump.rdb 的二进制文件中。通过 RDB 快照&#xff…

Pytorch课程论文设计参考

Pytorch下基于卷积神经网络的手写数字识别 论文格式 利用wps初步美化论文格式教程 wps论文格式变的的原因 格式变的根本原因是word为流式文件&#xff0c;就算同是word同一个版本不同电脑也会有可能变&#xff0c;字体变是因为没有嵌入字体然后观看的那台没有这个字体。 一、…

Excel单元格输入逐字动态提示可选输入效果制作

Excel单元格输入逐字动态提示可选输入效果制作。INDEX函数整理动态列表&#xff0c;再配合IF函数干净界面&#xff0c;“数据验证”完成点选。 (笔记模板由python脚本于2024年06月27日 22:26:14创建&#xff0c;本篇笔记适合喜欢用Excel处理数据的coder翻阅) 【学习的细节是欢悦…

视频监控管理平台LntonCVS智能视频监控平台系统详细介绍

安防视频监控平台LntonCVS以其卓越的灵活性和便捷的部署特性在众多同类产品中脱颖而出。它不仅支持多种主流标准协议&#xff0c;如国标GB28181、RTSP/Onvif、RTMP等&#xff0c;还兼容了海康Ehome、海大宇等厂家的私有协议和SDK接入&#xff0c;为用户提供了更加丰富的选择。 …

什么是有效的电子签名?PDF电子签名怎样具备法律效力?

电子签名逐渐成为商务文书和法律文件中不可或缺的一部分。《电子签名法》自2005年4月1日起施行&#xff0c;这一立法是中国信息化法律的重要里程碑&#xff0c;为电子签名应用奠定了法律基础。电子签名不仅仅是一种技术手段&#xff0c;更是一种法律认可的签名形式。那么究竟什…

【vue3】【vant】 移动端中国传统文化和民间传说案例

更多项目点击&#x1f446;&#x1f446;&#x1f446;完整项目成品专栏 【vue3】【vant】 移动端中国传统文化和民间传说案例 获取源码方式项目说明&#xff1a;其中功能包括项目包含&#xff1a;项目运行环境运行截图和视频 获取源码方式 加Q群&#xff1a;632562109项目说…

clickhouse count和uniqCombined

count(distinct ) 和 uniqCombined 获取去重后的总数。 去重&#xff1a;order by distinct argMax group by 哪个好&#xff1f;&#xff1f; clickhouse数据去重函数介绍&#xff08;count distinct&#xff09;_clickhouse distinct-CSDN博客

重生之我要学后端0--HTTP协议和RESTful APIs

http和RESTful APIs HTTP协议RESTful APIs设计RESTful API设计实例 HTTP协议 HTTP&#xff08;超文本传输协议&#xff09;是用于分布式、协作式和超媒体信息系统的应用层协议。它是网页数据通讯的基础。工作原理简述如下&#xff1a; 客户端请求&#xff08;Request&#xf…

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] 特殊加密算法(200分) - 三语言AC题解(Python/Java/Cpp)

&#x1f36d; 大家好这里是清隆学长 &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f497; &#x1f…

Python和tkinter实现的字母记忆配对游戏

Python和tkinter实现的字母记忆配对游戏 因为这个小游戏用到了tkinter&#xff0c;先简要介绍一下它。tkinter是Python的标准GUI(图形用户界面)库&#xff0c;它提供了一种简单而强大的方式来创建图形界面应用程序。它提供了创建基本图形界面所需的所有工具&#xff0c;同时保…

生产者发送数据,kafka服务器接收数据异常的问题记录

现象&#xff1a; 某个客户要求审计日志用kafka的方式传输给他们&#xff0c;使用了第三方的librdkafka库来开发。 往客户提供的kafka服务器上的一个topic发送数据&#xff0c;这个topic有三个分区&#xff0c;客户反馈接收到的数据和发送端发送的实际数量对不上&#xff0c;他…

Elasticsearch环境搭建|ES单机|ES单节点模式启动|ES集群搭建|ES集群环境搭建

文章目录 版本选择单机ES安装与配置创建非root用户导入安装包安装包解压配置JDK环境变量配置single-node配置JVM参数后台启动|启动日志查看启动成功&#xff0c;访问终端访问浏览器访问 Kibana安装修改配置后台启动|启动日志查看浏览器访问 ES三节点集群搭建停止es服务域名配置…

平板WPS转换的PDF文件保存位置解析

在日常工作和生活中&#xff0c;我们经常需要将文档转换成PDF格式进行分享&#xff0c;以确保接收者能够无障碍地查看文件内容&#xff0c;不受软件版本或操作系统的限制。WPS作为一款功能强大的办公软件&#xff0c;也提供了文档转换为PDF的功能。然而&#xff0c;有时在转换并…

HarmonyOS--数据持久化--关系型数据库

文档中心 关系型数据库 场景介绍 关系型数据库基于SQLite组件&#xff0c;适用于存储包含复杂关系数据的场景&#xff0c;比如一个班级的学生信息&#xff0c;需要包括姓名、学号、各科成绩等&#xff0c;又或者公司的雇员信息&#xff0c;需要包括姓名、工号、职位等&#…