[C#]基于opencvsharp实现15关键点人体姿态估计

数据集

正确选择数据集以对结果产生适当影响也是非常必要的。在此姿势检测中,模型在两个不同的数据集即COCO关键点数据集和MPII人类姿势数据集上进行了预训练。

1. COCO:COCO关键点数据集是一个多人2D姿势估计数据集,其中包含从Flickr收集的图像。迄今为止,COCO是最大的2D姿势估计数据集,并被视为测试2D姿势估计算法的基准。COCO模型有18种分类。COCO输出格式:鼻子— 0,脖子—1,右肩—2,右肘—3,右手腕—4,左肩—5,左手肘—6,左手腕—7,右臀部—8,右膝盖—9,右脚踝—10,左臀部—11,左膝—12,左脚踝—13,右眼—14,左眼—15,右耳—16,左耳—17,背景—18

2. MPII:MPII人体姿势数据集是一个多人2D姿势估计数据集,包含从Youtube视频中收集的近500种不同的人类活动。MPII是第一个包含各种姿势范围的数据集,也是第一个在2014年发起2D姿势估计挑战的数据集。MPII模型输出15分。MPII输出格式:头—0,脖子—1,右肩—2,右肘—3,右腕—4,左肩—5,左肘—6,左腕—7,右臀部—8,右膝盖—9,右脚踝—10,左臀部—11,左膝盖—12,左脚踝—13,胸部—14,背景—15

这些点是在对数据集进行处理并通过卷积神经网络(CNN)进行全面训练时生成的。

具体步骤

步骤1:需求收集(模型权重)和负载网络

训练有素的模型需要加载到OpenCV中。这些模型在Caffe深度学习框架上进行了训练。Caffe模型包含两个文件,即.prototxt文件和.caffemodel文件。

  1. .prototxt文件指定了神经网络的体系结构。
  2. .caffemodel文件存储训练后的模型的权重。

然后我们将这两个文件加载到网络中。

1

2

3

4

5

# Specify the paths for the 2 files

protoFile = "pose/mpi/pose_deploy_linevec_faster_4_stages.prototxt"

weightsFile = "pose/mpi/pose_iter_160000.caffemodel"

# Read the network into Memory

net = cv2.dnn.readNetFromCaffe(protoFile, weightsFile)

步骤2:读取图像并准备输入网络

首先,我们需要使用blobFromImage函数将图像从OpenCV格式转换为Caffe blob格式,以便可以将其作为输入输入到网络。这些参数将在blobFromImage函数中提供。由于OpenCV和Caffe都使用BGR格式,因此无需交换R和B通道。

1

2

3

4

5

6

7

8

9

# Read image

frame = cv2.imread("image.jpg")

# Specify the input image dimensions

inWidth = 368

inHeight = 368

# Prepare the frame to be fed to the network

inpBlob = cv2.dnn.blobFromImage(frame, 1.0 / 255, (inWidth, inHeight), (0, 0, 0), swapRB=False, crop=False)

# Set the prepared object as the input blob of the network

net.setInput(inpBlob)

步骤3:做出预测并解析关键点

一旦将图像传递到模型,就可以使用OpenCV中DNN类的正向方法进行预测,该方法通过网络进行正向传递,这只是说它正在进行预测的另一种方式。

1

output = net.forward()

输出为4D矩阵:

  1. 第一个维度是图片ID(如果您将多个图片传递到网络)。
  2. 第二个维度指示关键点的索引。该模型会生成置信度图(在图像上的概率分布,表示每个像素处关节位置的置信度)和所有已连接的零件亲和度图。对于COCO模型,它由57个部分组成-18个关键点置信度图+ 1个背景+ 19 * 2个部分亲和度图。同样,对于MPI,它会产生44点。我们将仅使用与关键点相对应的前几个点。
  3. 第三维是输出图的高度。
  4. 第四个维度是输出图的宽度。

然后,我们检查图像中是否存在每个关键点。我们通过找到关键点的置信度图的最大值来获得关键点的位置。我们还使用阈值来减少错误检测。

置信度图

一旦检测到关键点,我们便将其绘制在图像上。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

H = out.shape[2]

W = out.shape[3]

# Empty list to store the detected keypoints

points = []

for i in range(len()):

# confidence map of corresponding body's part.

    probMap = output[0, i, :, :]

# Find global maxima of the probMap.

    minVal, prob, minLoc, point = cv2.minMaxLoc(probMap)

# Scale the point to fit on the original image

x = (frameWidth * point[0]) / W

y = (frameHeight * point[1]) / H

if prob > threshold :

        cv2.circle(frame, (int(x), int(y)), 15, (0, 255, 255), thickness=-1, lineType=cv.FILLED)

        cv2.putText(frame, "{}".format(i), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1.4, (0, 0, 255), 3, lineType=cv2.LINE_AA)

# Add the point to the list if the probability is greater than the threshold

        points.append((int(x), int(y)))

else :

        points.append(None)

cv2.imshow("Output-Keypoints",frame)

cv2.waitKey(0)

cv2.destroyAllWindows()

步骤4:绘制骨架

由于我们已经绘制了关键点,因此我们现在只需将两对连接即可绘制骨架。

1

2

3

4

5

for pair in POSE_PAIRS:

partA = pair[0]

partB = pair[1]

if points[partA] and points[partB]:

cv2.line(frameCopy, points[partA], points[partB], (0, 255, 0), 3)

结果

上面显示的输出向我们显示了运动员在特定时刻的准确姿势。下面是视频的检测结果。

【界面展示】

【效果演示】

【部分实现源码】

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using OpenCvSharp;

namespace FIRC
{
    public partial class Form1 : Form
    {
        Mat src = new Mat();
        PoseManager detector = new PoseManager(Application.StartupPath+ "\\weights\\pose_deploy_linevec_faster_4_stages.prototxt", Application.StartupPath + "\\weights\\pose_iter_160000.caffemodel");
        public Form1()
        {
            InitializeComponent();
        }

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog openFileDialog = new OpenFileDialog();
            openFileDialog.Filter = "图文件(*.*)|*.jpg;*.png;*.jpeg;*.bmp";
            openFileDialog.RestoreDirectory = true;
            openFileDialog.Multiselect = false;
            if (openFileDialog.ShowDialog() == DialogResult.OK)
            {
              
                src = Cv2.ImRead(openFileDialog.FileName);
                pictureBox1.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(src);


            }


        }

        private void button2_Click(object sender, EventArgs e)
        {
            if(pictureBox1.Image==null)
            {
                return;
            }
            var resultMat = detector.Inference(src);
            pictureBox2.Image= OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultMat); //Mat转Bitmap
        }

        private void Form1_Load(object sender, EventArgs e)
        {
          
        }

        private void button3_Click(object sender, EventArgs e)
        {
            VideoCapture capture = new VideoCapture("test.mp4");
            if (!capture.IsOpened())
            {
                Console.WriteLine("video not open!");
                return;
            }
            Mat frame = new Mat();
            var sw = new Stopwatch();
            int fps = 0;
            while (true)
            {

                capture.Read(frame);
                if (frame.Empty())
                {
                    Console.WriteLine("data is empty!");
                    break;
                }
                sw.Start();
                var result = detector.Inference(frame);
                sw.Stop();
                fps = Convert.ToInt32(1 / sw.Elapsed.TotalSeconds);
                sw.Reset();
                Cv2.PutText(result, "FPS=" + fps, new OpenCvSharp.Point(30, 30), HersheyFonts.HersheyComplex, 1.0, new Scalar(255, 0, 0), 3);
                //显示结果
                Cv2.ImShow("Result", result);
                int key = Cv2.WaitKey(10);
                if (key == 27)
                    break;
            }

            capture.Release();
        }
    }
}

【视频演示】

C# winform基于opencvsharp实现15关键点人体姿态估计_哔哩哔哩_bilibili【测试环境】vs2019netfframework4.7.2opencvsharp4.8.0【演示源码下载】【注意事项】源码演示只支持单人姿态估计,不支持一个图片多人姿态估计,如果需要支持多人姿态估计可以先检测出人,然后截取出来进行单人估计即可更多信息参考博文:https://blog.csdn.net/FL1623863129/article/details/140002519, 视频播放量 1、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:Python自动化脚本,Python训练AI自动玩王者荣耀,简直不要太秀!!!,yolov9+deepsort+pyqt5实现目标追踪结果演示,将yolov5-6.2封装成一个类几行代码完成语义分割任务,基于onnx模型加密与解密深度学习模型保护方法介绍,C# OpenCvSharp Yolov8 Face Landmarks 人脸五点关键点检测,C++使用纯opencv去部署yolov8官方obb旋转框检测,基于yolov8+bytetrack实现目标追踪视频演示,使用C++部署yolov8的onnx和bytetrack实现目标追踪,C#实现全网yolov7目前最快winform目标检测,C#使用opencvsharp进行年龄和性别预测支持视频图片检测icon-default.png?t=N7T8https://www.bilibili.com/video/BV1m1421C7So/?vd_source=989ae2b903ea1b5acebbe2c4c4a635ee 

【测试环境】

vs2019

netframework4.7.2

opencvsharp4.8.0

【演示源码下载】

https://download.csdn.net/download/FL1623863129/89486922

【注意事项】

源码演示只支持单人姿态估计,不支持一个图片多人姿态估计,如果需要支持多人姿态估计可以先检测出人,然后截取出来进行单人估计即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/751670.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Redis集群(Clustering in Redis)工作机制详解

Redis集群工作机制详解 Redis 集群是用于提高 Redis 可扩展性和高可用性的解决方案。 维基百科:Scalability is the property of a system to handle a growing amount of work by adding resources to the system. 可扩展性是系统的一种允许通过增加系统资源来处…

Zookeeper:基于Zookeeper的分布式锁

一、Zookeeper分布式锁原理 二、Zookeeper JavaAPI操作 1、Curator介绍 Curator是Apache Zookeeper的Java客户端。常见的Zookeeper Java API: 原生Java API。ZkClient。Curator。 Curator项目目标是简化Zookeeper客户端的使用。Curator最初是Netfix研发的&#xf…

Python | Leetcode Python题解之第202题快乐数

题目: 题解: def isHappy(self, n: int) -> bool:cycle_members {4, 16, 37, 58, 89, 145, 42, 20}def get_next(number):total_sum 0while number > 0:number, digit divmod(number, 10)total_sum digit ** 2return total_sumwhile n ! 1 an…

【UE5.3】笔记5-蓝图类

什么是蓝图类:其实就是C类,只不过是UE封装好的且可以直接拖出来可视化使用。 如何创建蓝图类?蓝图类有哪些? 蓝图类分为基于关卡的,基于Actor的,基于组件Component的。 基于关卡的蓝图类 一个关卡只能有…

Python | Leetcode Python题解之第201题数字范围按位与

题目&#xff1a; 题解&#xff1a; class Solution:def rangeBitwiseAnd(self, m: int, n: int) -> int:while m < n:# 抹去最右边的 1n n & (n - 1)return n

【Python实战因果推断】4_因果效应异质性4

目录 Cumulative Gain Target Transformation Cumulative Gain 如果采用与累积效应曲线完全相同的逻辑&#xff0c;但将每个点乘以累积样本 Ncum/N&#xff0c;就会得到累积增益曲线。现在&#xff0c;即使曲线的起点具有最高的效果&#xff08;对于一个好的模型来说&#x…

vue 实现 word/excel/ppt/pdf 等文件格式预览操作

效果图&#xff1a; 问题描述&#xff1a;一般情况下使用iframe标签就可以实现文件预览&#xff0c;但是这个标签只针对于ppt和pdf是有效的。对于doc文件就需要借助第三方插件&#xff08;vue-office/docx&#xff09;来实现预览了。下面介绍使用方法。 安装插件&#xff1a;n…

Golang | Leetcode Golang题解之第201题数字范围按位与

题目&#xff1a; 题解&#xff1a; func rangeBitwiseAnd(m int, n int) int {for m < n {n & (n - 1)}return n }

C语言 | Leetcode C语言题解之第202题快乐数

题目&#xff1a; 题解&#xff1a; //计算的过程函数&#xff0c;我没重点讲&#xff0c;很简单看一下代码就好了 int getSum(int n) {int sum 0;while (n) {sum (n % 10) * (n % 10);n / 10;}return sum; }bool isHappy(int n){int sum getSum(n);int hash[820] {0};whi…

数字时代的文化革命:Facebook的社会影响

随着数字技术的飞速发展和互联网的普及&#xff0c;社交网络如今已成为人们日常生活中不可或缺的一部分。在众多社交平台中&#xff0c;Facebook作为最大的社交网络之一&#xff0c;不仅连接了全球数十亿用户&#xff0c;更深刻影响了人们的社会互动方式、文化认同和信息传播模…

BFS:队列+树的宽搜

一、二叉树的层序遍历 . - 力扣&#xff08;LeetCode&#xff09; 该题的层序遍历和以往不同的是需要一层一层去遍历&#xff0c;每一次while循环都要知道在队列中节点的个数&#xff0c;然后用一个for循环将该层节点走完了再走下一层 class Solution { public:vector<vec…

JeeSite中的数据库表动态建模与管理模块(DBM)

一、引言 在现代软件开发中&#xff0c;数据库作为系统数据存储和管理的核心&#xff0c;其设计和维护的灵活性、可扩展性对于系统的长期稳定运行至关重要。JeeSite作为一款流行的企业级快速开发平台&#xff0c;其数据库表动态管理模块&#xff08;DBM&#xff09;提供了强大…

LeetCode 585, 438, 98

目录 585. 2016年的投资题目链接表要求知识点思路代码 438. 找到字符串中所有字母异位词题目链接标签思路代码 98. 验证二叉搜索树题目链接标签合法区间思路代码 中序遍历思路代码 585. 2016年的投资 题目链接 585. 2016年的投资 表 表Insurance的字段为pid、tiv_2015、tiv…

C++ | Leetcode C++题解之第202题快乐数

题目&#xff1a; 题解&#xff1a; class Solution { public:int ProductSum(int n){int sum 0;while(n){int temp n % 10;sum temp*temp;n / 10;}return sum;}bool isHappy(int n) {int slow n,fast n;// 快慢指针&#xff0c;找环的相遇位置do{slow ProductSum(slow)…

基于weixin小程序智慧物业系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;管理员管理&#xff0c;用户管理&#xff0c;员工管理&#xff0c;房屋管理&#xff0c;缴费管理&#xff0c;车位管理&#xff0c;报修管理 工作人员账号功能包括&#xff1a;系统首页&#xff0c;维…

Unity热更方案 YooAsset+HybridCLR,纯c#开发热更,保姆级教程,从零开始

文章预览&#xff1a; 一、前言二、创建空工程三、接入HybridCLR四、接入YooAsset五、搭建本地资源服务器Nginx六、实战七、最后 一、前言 unity热更有很多方案&#xff0c;各种lua热更&#xff0c;ILRuntime等&#xff0c;这里介绍的是YooAssetHybridCLR的热更方案&#xff0…

通达信机构买卖抓牛指标公式源码

通达信机构买卖抓牛指标公式源码&#xff1a; X_1:V/CLOSE/2; X_2:SUM(IF(X_1>100 AND CLOSE>REF(CLOSE,1),X_1,0),0); X_3:SUM(IF(X_1>100 AND CLOSE<REF(CLOSE,1),X_1,0),0); X_4:SUM(IF(X_1<100 AND CLOSE>REF(CLOSE,1),X_1,0),0); X_5:SUM(IF(X_1&l…

用英文介绍巴黎:Paris, France‘s MEGACITY Europe‘s Largest City

Paris, France’s MEGACITY: Europe’s Largest City Link: https://www.youtube.com/watch?vbdObzSwVAw4&listPLmSQiOQJmbZ7TU39cyx7gizM9i8nOuZXy&index22 Paris, France is the grand megacity of Europe at the forefront of human progress. Summary Summary …

macos Automator自动操作 app, 创建自定义 应用程序 app 的方法

mac内置的这个 自动操作 automator 应用程序&#xff0c;可以帮助我们做很多的重复的工作&#xff0c;可以创建工作流&#xff0c; 可以录制并回放操作&#xff0c; 还可以帮助我们创建自定的应用程序&#xff0c;下面我们就以创建一个自定义启动参数的chrome.app为例&#xff…

vue的ESLint 4格缩进 笔记

https://chatgpt.com/share/738c8560-5271-45c4-9de0-511fad862109 一&#xff0c;代码4格缩进设置 .eslintrc.js文件 module.exports { "rules": { "indent": ["error", 4] } }; 自动修复命令 npx eslint --fix "src/**/*.{…