62、华为昇腾开发板Atlas 200I DK A2配置mmpose的hrnet模型推理python/c++

基本思想:适配mmpose模型,记录一下流水帐,环境配置和模型来自,请查看参考链接。

链接: https://pan.baidu.com/s/1IkiwuZf1anyKX1sZkYmD1g?pwd=i51s 提取码: i51s

一、转模型

(base) root@davinci-mini:~/sxj731533730# atc --model=end2end.onnx --framework=5 --output=end2end --input_format=NCHW --input_shape="input:1,3,256,256" --log=error --soc_version=Ascend310B1
ATC start working now, please wait for a moment.
...
ATC run success, welcome to the next use.

python代码


import time
import cv2
import numpy as np
from ais_bench.infer.interface import InferSession

model_path = "end2end.om"
IMG_PATH = "ca110.jpeg"




def bbox_xywh2cs(bbox, aspect_ratio, padding=1., pixel_std=200.):
    """Transform the bbox format from (x,y,w,h) into (center, scale)
    Args:
        bbox (ndarray): Single bbox in (x, y, w, h)
        aspect_ratio (float): The expected bbox aspect ratio (w over h)
        padding (float): Bbox padding factor that will be multilied to scale.
            Default: 1.0
        pixel_std (float): The scale normalization factor. Default: 200.0
    Returns:
        tuple: A tuple containing center and scale.
        - np.ndarray[float32](2,): Center of the bbox (x, y).
        - np.ndarray[float32](2,): Scale of the bbox w & h.
    """

    x, y, w, h = bbox[:4]
    center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32)

    if w > aspect_ratio * h:
        h = w * 1.0 / aspect_ratio
    elif w < aspect_ratio * h:
        w = h * aspect_ratio

    scale = np.array([w, h], dtype=np.float32) / pixel_std
    scale = scale * padding

    return center, scale


def rotate_point(pt, angle_rad):
    """Rotate a point by an angle.
    Args:
        pt (list[float]): 2 dimensional point to be rotated
        angle_rad (float): rotation angle by radian
    Returns:
        list[float]: Rotated point.
    """
    assert len(pt) == 2
    sn, cs = np.sin(angle_rad), np.cos(angle_rad)
    new_x = pt[0] * cs - pt[1] * sn
    new_y = pt[0] * sn + pt[1] * cs
    rotated_pt = [new_x, new_y]

    return rotated_pt


def _get_3rd_point(a, b):
    """To calculate the affine matrix, three pairs of points are required. This
    function is used to get the 3rd point, given 2D points a & b.
    The 3rd point is defined by rotating vector `a - b` by 90 degrees
    anticlockwise, using b as the rotation center.
    Args:
        a (np.ndarray): point(x,y)
        b (np.ndarray): point(x,y)
    Returns:
        np.ndarray: The 3rd point.
    """
    assert len(a) == 2
    assert len(b) == 2
    direction = a - b
    third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)

    return third_pt


def get_affine_transform(center,
                         scale,
                         rot,
                         output_size,
                         shift=(0., 0.),
                         inv=False):
    """Get the affine transform matrix, given the center/scale/rot/output_size.
    Args:
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
        scale (np.ndarray[2, ]): Scale of the bounding box
            wrt [width, height].
        rot (float): Rotation angle (degree).
        output_size (np.ndarray[2, ] | list(2,)): Size of the
            destination heatmaps.
        shift (0-100%): Shift translation ratio wrt the width/height.
            Default (0., 0.).
        inv (bool): Option to inverse the affine transform direction.
            (inv=False: src->dst or inv=True: dst->src)
    Returns:
        np.ndarray: The transform matrix.
    """
    assert len(center) == 2
    assert len(scale) == 2
    assert len(output_size) == 2
    assert len(shift) == 2

    # pixel_std is 200.
    scale_tmp = scale * 200.0

    shift = np.array(shift)
    src_w = scale_tmp[0]
    dst_w = output_size[0]
    dst_h = output_size[1]

    rot_rad = np.pi * rot / 180
    src_dir = rotate_point([0., src_w * -0.5], rot_rad)
    dst_dir = np.array([0., dst_w * -0.5])

    src = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    src[2, :] = _get_3rd_point(src[0, :], src[1, :])

    dst = np.zeros((3, 2), dtype=np.float32)
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
    dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


def bbox_xyxy2xywh(bbox_xyxy):
    """Transform the bbox format from x1y1x2y2 to xywh.
    Args:
        bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or
            (n, 5). (left, top, right, bottom, [score])
    Returns:
        np.ndarray: Bounding boxes (with scores),
          shaped (n, 4) or (n, 5). (left, top, width, height, [score])
    """
    bbox_xywh = bbox_xyxy.copy()
    bbox_xywh[:, 2] = bbox_xywh[:, 2] - bbox_xywh[:, 0]
    bbox_xywh[:, 3] = bbox_xywh[:, 3] - bbox_xywh[:, 1]

    return bbox_xywh


def _get_max_preds(heatmaps):
    """Get keypoint predictions from score maps.
    Note:
        batch_size: N
        num_keypoints: K
        heatmap height: H
        heatmap width: W
    Args:
        heatmaps (np.ndarray[N, K, H, W]): model predicted heatmaps.
    Returns:
        tuple: A tuple containing aggregated results.
        - preds (np.ndarray[N, K, 2]): Predicted keypoint location.
        - maxvals (np.ndarray[N, K, 1]): Scores (confidence) of the keypoints.
    """
    assert isinstance(heatmaps,
                      np.ndarray), ('heatmaps should be numpy.ndarray')
    assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'

    N, K, _, W = heatmaps.shape
    heatmaps_reshaped = heatmaps.reshape((N, K, -1))
    idx = np.argmax(heatmaps_reshaped, 2).reshape((N, K, 1))
    maxvals = np.amax(heatmaps_reshaped, 2).reshape((N, K, 1))

    preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
    preds[:, :, 0] = preds[:, :, 0] % W
    preds[:, :, 1] = preds[:, :, 1] // W

    preds = np.where(np.tile(maxvals, (1, 1, 2)) > 0.0, preds, -1)
    return preds, maxvals


def transform_preds(coords, center, scale, output_size, use_udp=False):
    """Get final keypoint predictions from heatmaps and apply scaling and
    translation to map them back to the image.
    Note:
        num_keypoints: K
    Args:
        coords (np.ndarray[K, ndims]):
            * If ndims=2, corrds are predicted keypoint location.
            * If ndims=4, corrds are composed of (x, y, scores, tags)
            * If ndims=5, corrds are composed of (x, y, scores, tags,
              flipped_tags)
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
        scale (np.ndarray[2, ]): Scale of the bounding box
            wrt [width, height].
        output_size (np.ndarray[2, ] | list(2,)): Size of the
            destination heatmaps.
        use_udp (bool): Use unbiased data processing
    Returns:
        np.ndarray: Predicted coordinates in the images.
    """
    assert coords.shape[1] in (2, 4, 5)
    assert len(center) == 2
    assert len(scale) == 2
    assert len(output_size) == 2

    # Recover the scale which is normalized by a factor of 200.
    scale = scale * 200.0

    if use_udp:
        scale_x = scale[0] / (output_size[0] - 1.0)
        scale_y = scale[1] / (output_size[1] - 1.0)
    else:
        scale_x = scale[0] / output_size[0]
        scale_y = scale[1] / output_size[1]

    target_coords = np.ones_like(coords)
    target_coords[:, 0] = coords[:, 0] * scale_x + center[0] - scale[0] * 0.5
    target_coords[:, 1] = coords[:, 1] * scale_y + center[1] - scale[1] * 0.5

    return target_coords


def keypoints_from_heatmaps(heatmaps,
                            center,
                            scale,
                            unbiased=False,
                            post_process='default',
                            kernel=11,
                            valid_radius_factor=0.0546875,
                            use_udp=False,
                            target_type='GaussianHeatmap'):
    # Avoid being affected
    heatmaps = heatmaps.copy()

    N, K, H, W = heatmaps.shape
    preds, maxvals = _get_max_preds(heatmaps)
    # add +/-0.25 shift to the predicted locations for higher acc.
    for n in range(N):
        for k in range(K):
            heatmap = heatmaps[n][k]
            px = int(preds[n][k][0])
            py = int(preds[n][k][1])
            if 1 < px < W - 1 and 1 < py < H - 1:
                diff = np.array([
                    heatmap[py][px + 1] - heatmap[py][px - 1],
                    heatmap[py + 1][px] - heatmap[py - 1][px]
                ])
                preds[n][k] += np.sign(diff) * .25
                if post_process == 'megvii':
                    preds[n][k] += 0.5

    # Transform back to the image
    for i in range(N):
        preds[i] = transform_preds(
            preds[i], center[i], scale[i], [W, H], use_udp=use_udp)

    if post_process == 'megvii':
        maxvals = maxvals / 255.0 + 0.5

    return preds, maxvals


def decode(output, center, scale, score_, batch_size=1):
    c = np.zeros((batch_size, 2), dtype=np.float32)
    s = np.zeros((batch_size, 2), dtype=np.float32)
    score = np.ones(batch_size)
    for i in range(batch_size):
        c[i, :] = center
        s[i, :] = scale

        score[i] = np.array(score_).reshape(-1)

    preds, maxvals = keypoints_from_heatmaps(
        output,
        c,
        s,
        False,
        'default',
        11,
        0.0546875,
        False,
        'GaussianHeatmap'
    )

    all_preds = np.zeros((batch_size, preds.shape[1], 3), dtype=np.float32)
    all_boxes = np.zeros((batch_size, 6), dtype=np.float32)
    all_preds[:, :, 0:2] = preds[:, :, 0:2]
    all_preds[:, :, 2:3] = maxvals
    all_boxes[:, 0:2] = c[:, 0:2]
    all_boxes[:, 2:4] = s[:, 0:2]
    all_boxes[:, 4] = np.prod(s * 200.0, axis=1)
    all_boxes[:, 5] = score
    result = {}

    result['preds'] = all_preds
    result['boxes'] = all_boxes

    print(result)
    return result


def draw(bgr, predict_dict, skeleton,box):
    cv2.rectangle(bgr, (int(box[0]), int(box[1])), (int(box[0]) + int(box[2]), int(box[1]) + int(box[3])),
                      (255, 0, 0))

    all_preds = predict_dict["preds"]
    for all_pred in all_preds:
        for x, y, s in all_pred:
            cv2.circle(bgr, (int(x), int(y)), 3, (0, 255, 120), -1)
        for sk in skeleton:
            x0 = int(all_pred[sk[0]][0])
            y0 = int(all_pred[sk[0]][1])
            x1 = int(all_pred[sk[1]][0])
            y1 = int(all_pred[sk[1]][1])
            cv2.line(bgr, (x0, y0), (x1, y1), (0, 255, 0), 1)
    cv2.imwrite("sxj731533730_sxj.jpg", bgr)


if __name__ == "__main__":

    # Create RKNN object
    model = InferSession(0, model_path)
    print("done")
    bbox = [13.711652 , 26.188112, 293.61298-13.711652 ,  227.78246-26.188112, 9.995332e-01]
    image_size = [256, 256]
    src_img = cv2.imread(IMG_PATH)
    img = cv2.cvtColor(src_img, cv2.COLOR_BGR2RGB)  # hwc rgb
    aspect_ratio = image_size[0] / image_size[1]
    img_height = img.shape[0]
    img_width = img.shape[1]
    padding = 1.25
    pixel_std = 200
    center, scale = bbox_xywh2cs(
        bbox,
        aspect_ratio,
        padding,
        pixel_std)
    trans = get_affine_transform(center, scale, 0, image_size)
    img = cv2.warpAffine(
        img,
        trans, (int(image_size[0]), int(image_size[1])),
        flags=cv2.INTER_LINEAR)
    print(trans)
    img = img / 255.0  # 归一化到0~1

    img = img.transpose(2, 0, 1)
    img = np.ascontiguousarray(img, dtype=np.float32)
    # Inference
    print("--> Running model")

    outputs = model.infer([img])[0]



    print(outputs)
    predict_dict = decode(outputs, center, scale, bbox[-1])
    skeleton = [[0, 1],[0, 2],[1, 3],[0, 4],
                         [1, 4],[4,  5],[5,  7],[5,8],[5,  9],
                         [6,  7],[6,  10],[6,  11],[8,  12],
                         [9,  13],[10,  14],[11,  15],[12,  16],
                         [13,  17],[14,  18],[15,  19]]
    draw(src_img, predict_dict, skeleton,bbox)

cmakelists.txt

cmake_minimum_required(VERSION 3.16)
project(untitled10)
set(CMAKE_CXX_FLAGS "-std=c++11")
set(CMAKE_CXX_STANDARD 11)
add_definitions(-DENABLE_DVPP_INTERFACE)

include_directories(/usr/local/samples/cplusplus/common/acllite/include)
include_directories(/usr/local/Ascend/ascend-toolkit/latest/aarch64-linux/include)
find_package(OpenCV REQUIRED)
#message(STATUS ${OpenCV_INCLUDE_DIRS})
#添加头文件
include_directories(${OpenCV_INCLUDE_DIRS})
#链接Opencv库
add_library(libascendcl SHARED IMPORTED)
set_target_properties(libascendcl PROPERTIES IMPORTED_LOCATION /usr/local/Ascend/ascend-toolkit/latest/aarch64-linux/lib64/libascendcl.so)
add_library(libacllite SHARED IMPORTED)
set_target_properties(libacllite PROPERTIES IMPORTED_LOCATION /usr/local/samples/cplusplus/common/acllite/out/aarch64/libacllite.so)


add_executable(untitled10 main.cpp)
target_link_libraries(untitled10 ${OpenCV_LIBS} libascendcl libacllite)

c++代码

#include <opencv2/opencv.hpp>
#include "AclLiteUtils.h"
#include "AclLiteImageProc.h"
#include "AclLiteResource.h"
#include "AclLiteError.h"
#include "AclLiteModel.h"


using namespace std;
using namespace cv;
typedef enum Result {
    SUCCESS = 0,
    FAILED = 1
} Result;

struct Keypoints {
    float x;
    float y;
    float score;

    Keypoints() : x(0), y(0), score(0) {}

    Keypoints(float x, float y, float score) : x(x), y(y), score(score) {}
};

struct Box {
    float center_x;
    float center_y;
    float scale_x;
    float scale_y;
    float scale_prob;
    float score;

    Box() : center_x(0), center_y(0), scale_x(0), scale_y(0), scale_prob(0), score(0) {}

    Box(float center_x, float center_y, float scale_x, float scale_y, float scale_prob, float score) :
            center_x(center_x), center_y(center_y), scale_x(scale_x), scale_y(scale_y), scale_prob(scale_prob),
            score(score) {}
};

void bbox_xywh2cs(float bbox[], float aspect_ratio, float padding, float pixel_std, float *center, float *scale) {
    float x = bbox[0];
    float y = bbox[1];
    float w = bbox[2];
    float h = bbox[3];
    *center = x + w * 0.5;
    *(center + 1) = y + h * 0.5;
    if (w > aspect_ratio * h)
        h = w * 1.0 / aspect_ratio;
    else if (w < aspect_ratio * h)
        w = h * aspect_ratio;


    *scale = (w / pixel_std) * padding;
    *(scale + 1) = (h / pixel_std) * padding;
}

void rotate_point(float *pt, float angle_rad, float *rotated_pt) {
    float sn = sin(angle_rad);
    float cs = cos(angle_rad);
    float new_x = pt[0] * cs - pt[1] * sn;
    float new_y = pt[0] * sn + pt[1] * cs;
    rotated_pt[0] = new_x;
    rotated_pt[1] = new_y;

}

void _get_3rd_point(cv::Point2f a, cv::Point2f b, float *direction) {

    float direction_0 = a.x - b.x;
    float direction_1 = a.y - b.y;
    direction[0] = b.x - direction_1;
    direction[1] = b.y + direction_0;


}

void get_affine_transform(float *center, float *scale, float rot, float *output_size, float *shift, bool inv,
                          cv::Mat &trans) {
    float scale_tmp[] = {0, 0};
    scale_tmp[0] = scale[0] * 200.0;
    scale_tmp[1] = scale[1] * 200.0;
    float src_w = scale_tmp[0];
    float dst_w = output_size[0];
    float dst_h = output_size[1];
    float rot_rad = M_PI * rot / 180;
    float pt[] = {0, 0};
    pt[0] = 0;
    pt[1] = src_w * (-0.5);
    float src_dir[] = {0, 0};
    rotate_point(pt, rot_rad, src_dir);
    float dst_dir[] = {0, 0};
    dst_dir[0] = 0;
    dst_dir[1] = dst_w * (-0.5);
    cv::Point2f src[3] = {cv::Point2f(0, 0), cv::Point2f(0, 0), cv::Point2f(0, 0)};
    src[0] = cv::Point2f(center[0] + scale_tmp[0] * shift[0], center[1] + scale_tmp[1] * shift[1]);
    src[1] = cv::Point2f(center[0] + src_dir[0] + scale_tmp[0] * shift[0],
                         center[1] + src_dir[1] + scale_tmp[1] * shift[1]);
    float direction_src[] = {0, 0};
    _get_3rd_point(src[0], src[1], direction_src);
    src[2] = cv::Point2f(direction_src[0], direction_src[1]);
    cv::Point2f dst[3] = {cv::Point2f(0, 0), cv::Point2f(0, 0), cv::Point2f(0, 0)};
    dst[0] = cv::Point2f(dst_w * 0.5, dst_h * 0.5);
    dst[1] = cv::Point2f(dst_w * 0.5 + dst_dir[0], dst_h * 0.5 + dst_dir[1]);
    float direction_dst[] = {0, 0};
    _get_3rd_point(dst[0], dst[1], direction_dst);
    dst[2] = cv::Point2f(direction_dst[0], direction_dst[1]);

    if (inv) {
        trans = cv::getAffineTransform(dst, src);
    } else {
        trans = cv::getAffineTransform(src, dst);
    }


}


void
transform_preds(std::vector <cv::Point2f> coords, std::vector <Keypoints> &target_coords, float *center, float *scale,
                int w, int h, bool use_udp = false) {
    float scale_x[] = {0, 0};
    float temp_scale[] = {scale[0] * 200, scale[1] * 200};
    if (use_udp) {
        scale_x[0] = temp_scale[0] / (w - 1);
        scale_x[1] = temp_scale[1] / (h - 1);
    } else {
        scale_x[0] = temp_scale[0] / w;
        scale_x[1] = temp_scale[1] / h;
    }
    for (int i = 0; i < coords.size(); i++) {
        target_coords[i].x = coords[i].x * scale_x[0] + center[0] - temp_scale[0] * 0.5;
        target_coords[i].y = coords[i].y * scale_x[1] + center[1] - temp_scale[1] * 0.5;
    }

}


int main() {
    const char *modelPath = "../end2end.om";

    bool flip_test = true;
    bool heap_map = false;
    float keypoint_score = 0.3f;
    cv::Mat bgr = cv::imread("../ca110.jpeg");
    cv::Mat rgb;
    cv::cvtColor(bgr, rgb, cv::COLOR_BGR2RGB);

    float image_target_w = 256;
    float image_target_h = 256;
    float padding = 1.25;
    float pixel_std = 200;
    float aspect_ratio = image_target_h / image_target_w;
    float bbox[] = {13.711652, 26.188112, 293.61298, 227.78246, 9.995332e-01};// 需要检测框架 这个矩形框来自检测框架的坐标 x y w h score
    bbox[2] = bbox[2] - bbox[0];
    bbox[3] = bbox[3] - bbox[1];
    float center[2] = {0, 0};
    float scale[2] = {0, 0};
    bbox_xywh2cs(bbox, aspect_ratio, padding, pixel_std, center, scale);
    float rot = 0;
    float shift[] = {0, 0};
    bool inv = false;
    float output_size[] = {image_target_h, image_target_w};
    cv::Mat trans;
    get_affine_transform(center, scale, rot, output_size, shift, inv, trans);
    std::cout << trans << std::endl;
    std::cout << center[0] << " " << center[1] << " " << scale[0] << " " << scale[1] << std::endl;
    cv::Mat detect_image;//= cv::Mat::zeros(image_target_w ,image_target_h, CV_8UC3);
    cv::warpAffine(rgb, detect_image, trans, cv::Size(image_target_h, image_target_w), cv::INTER_LINEAR);
    //cv::imwrite("te.jpg",detect_image);
    std::cout << detect_image.cols << " " << detect_image.rows << std::endl;



    // inference
    bool release = false;
    //SampleYOLOV7 sampleYOLO(modelPath, target_width, target_height);

    float *imageBytes;
    AclLiteResource aclResource_;
    AclLiteImageProc imageProcess_;
    AclLiteModel model_;
    aclrtRunMode runMode_;
    ImageData resizedImage_;
    const char *modelPath_;
    int32_t modelWidth_;
    int32_t modelHeight_;

    AclLiteError ret = aclResource_.Init();
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("resource init failed, errorCode is %d", ret);
        return FAILED;
    }

    ret = aclrtGetRunMode(&runMode_);
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("get runMode failed, errorCode is %d", ret);
        return FAILED;
    }

    // init dvpp resource
    ret = imageProcess_.Init();
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("imageProcess init failed, errorCode is %d", ret);
        return FAILED;
    }

    // load model from file
    ret = model_.Init(modelPath);
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("model init failed, errorCode is %d", ret);
        return FAILED;
    }


    // data standardization
   float meanRgb[3] = {0, 0, 0};
    float stdRgb[3] = {1 / 255.0f, 1 / 255.0f, 1 / 255.0f};
    // create malloc of image, which is shape with NCHW
    //const float meanRgb[3] = {0.485f * 255.f, 0.456f * 255.f, 0.406f * 255.f};
    //const float stdRgb[3] = {(1 / 0.229f / 255.f), (1 / 0.224f / 255.f), (1 / 0.225f / 255.f)};



    int32_t channel = detect_image.channels();
    int32_t resizeHeight = detect_image.rows;
    int32_t resizeWeight = detect_image.cols;
    imageBytes = (float *) malloc(channel * image_target_w * image_target_h * sizeof(float));
    memset(imageBytes, 0, channel * image_target_h * image_target_w * sizeof(float));

    // image to bytes with shape HWC to CHW, and switch channel BGR to RGB

    for (int c = 0; c < channel; ++c) {
        for (int h = 0; h < resizeHeight; ++h) {
            for (int w = 0; w < resizeWeight; ++w) {
                int dstIdx = c * resizeHeight * resizeWeight + h * resizeWeight + w;

                imageBytes[dstIdx] = static_cast<float>(
                        (detect_image.at<cv::Vec3b>(h, w)[c] -
                         1.0f * meanRgb[c]) * 1.0f * stdRgb[c] );
            }
        }
    }


    std::vector <InferenceOutput> inferOutputs;
    ret = model_.CreateInput(static_cast<void *>(imageBytes),
                             channel * image_target_w * image_target_h * sizeof(float));
    if (ret == FAILED) {
        ACLLITE_LOG_ERROR("CreateInput failed, errorCode is %d", ret);
        return FAILED;
    }

    // inference
    ret = model_.Execute(inferOutputs);
    if (ret != ACL_SUCCESS) {
        ACLLITE_LOG_ERROR("execute model failed, errorCode is %d", ret);
        return FAILED;
    }

    // for()
    float *data = static_cast<float *>(inferOutputs[0].data.get());
    //输出维度
    int shape_d =1;
    int shape_c = 20;
    int shape_w = 64;
    int shape_h = 64;
    std::vector<float> vec_heap;
    for (int i = 0; i < shape_c * shape_h * shape_w; i++) {
        vec_heap.push_back(data[i]);
    }


    std::vector <Keypoints> all_preds;
    std::vector<int> idx;
    for (int i = 0; i < shape_c; i++) {
        auto begin = vec_heap.begin() + i * shape_w * shape_h;
        auto end = vec_heap.begin() + (i + 1) * shape_w * shape_h;
        float maxValue = *max_element(begin, end);
        int maxPosition = max_element(begin, end) - begin;
        all_preds.emplace_back(Keypoints(0, 0, maxValue));
        idx.emplace_back(maxPosition);
    }
    std::vector <cv::Point2f> vec_point;
    for (int i = 0; i < idx.size(); i++) {
        int x = idx[i] % shape_w;
        int y = idx[i] / shape_w;
        vec_point.emplace_back(cv::Point2f(x, y));
    }


    for (int i = 0; i < shape_c; i++) {
        int px = vec_point[i].x;
        int py = vec_point[i].y;
        if (px > 1 && px < shape_w - 1 && py > 1 && py < shape_h - 1) {
            float diff_0 = vec_heap[py * shape_w + px + 1] - vec_heap[py * shape_w + px - 1];
            float diff_1 = vec_heap[(py + 1) * shape_w + px] - vec_heap[(py - 1) * shape_w + px];
            vec_point[i].x += diff_0 == 0 ? 0 : (diff_0 > 0) ? 0.25 : -0.25;
            vec_point[i].y += diff_1 == 0 ? 0 : (diff_1 > 0) ? 0.25 : -0.25;
        }
    }
    std::vector <Box> all_boxes;
    if (heap_map) {
        all_boxes.emplace_back(Box(center[0], center[1], scale[0], scale[1], scale[0] * scale[1] * 400, bbox[4]));
    }
    transform_preds(vec_point, all_preds, center, scale, shape_w, shape_h);
    //0 L_Eye  1 R_Eye 2 L_EarBase 3 R_EarBase 4 Nose 5 Throat 6 TailBase 7 Withers 8 L_F_Elbow 9 R_F_Elbow 10 L_B_Elbow 11 R_B_Elbow
    // 12 L_F_Knee 13 R_F_Knee 14 L_B_Knee 15 R_B_Knee 16 L_F_Paw 17 R_F_Paw 18 L_B_Paw 19  R_B_Paw

    int skeleton[][2] = {{0,  1},
                         {0,  2},
                         {1,  3},
                         {0,  4},
                         {1,  4},
                         {4,  5},
                         {5,  7},
                         {5,  8},
                         {5,  9},
                         {6,  7},
                         {6,  10},
                         {6,  11},
                         {8,  12},
                         {9,  13},
                         {10, 14},
                         {11, 15},
                         {12, 16},
                         {13, 17},
                         {14, 18},
                         {15, 19}};

    cv::rectangle(bgr, cv::Point(bbox[0], bbox[1]), cv::Point(bbox[0] + bbox[2], bbox[1] + bbox[3]),
                  cv::Scalar(255, 0, 0));
    for (int i = 0; i < all_preds.size(); i++) {
        if (all_preds[i].score > keypoint_score) {
            cv::circle(bgr, cv::Point(all_preds[i].x, all_preds[i].y), 3, cv::Scalar(0, 255, 120), -1);//画点,其实就是实心圆
        }
    }
    for (int i = 0; i < sizeof(skeleton) / sizeof(sizeof(skeleton[1])); i++) {
        int x0 = all_preds[skeleton[i][0]].x;
        int y0 = all_preds[skeleton[i][0]].y;
        int x1 = all_preds[skeleton[i][1]].x;
        int y1 = all_preds[skeleton[i][1]].y;

        cv::line(bgr, cv::Point(x0, y0), cv::Point(x1, y1),
                 cv::Scalar(0, 255, 0), 1);

    }
    cv::imwrite("../image.jpg", bgr);


    model_.DestroyResource();
    imageProcess_.DestroyResource();
    aclResource_.Release();
    return SUCCESS;
}

测试结果

/root/sxj731533730/cmake-build-debug/untitled10
[0.7316863791031282, -0, 15.56737128098375;
 -4.62405306581973e-17, 0.7316863791031282, 35.08659815701316]
153.662 126.985 1.74938 1.74938
256 256
[INFO]  Acl init ok
[INFO]  Open device 0 ok
[INFO]  Use default context currently
[INFO]  dvpp init resource ok
[INFO]  Load model ../end2end.om success
[INFO]  Create model description success
[INFO]  Create model(../end2end.om) output success
[INFO]  Init model ../end2end.om success
[INFO]  Unload model ../end2end.om success
[INFO]  destroy context ok
[INFO]  Reset device 0 ok
[INFO]  Finalize acl ok

Process finished with exit code 0

参考自己的博客

48、mmpose中hrnet关键点识别模型转ncnn和mnn,并进行训练和部署_hrnet ncnn_sxj731533730的博客-CSDN博客

61、华为昇腾开发板Atlas 200I DK A2初步测试,yolov7_batchsize_1&yolov7_batchsize_3的python/c++推理测试_sxj731533730的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/75028.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

pytest的fixture梳理

fixture特性 1. 可以重复使用&#xff0c;多个用例可以使用同一个fixture 2. 一个测试用例可以使用多个装置 import pytest # Arrange pytest.fixture def first_entry():return "a"# Arrange pytest.fixture def second_entry():return 2# Arrange pytest.fixtur…

深入探索:解读创意的力量——idea的下载、初步使用

目录 ​编辑 1.IDEA的简介 2.IDEA的下载 2.1下载路径https://www.jetbrains.com/zh-cn/idea/download/?sectionwindows​编辑​ 2.2下载的步骤 3 idea的初步使用 3.1新建一个简单的Java项目 3.1.1首先需要创建一个新的工程 3.1.2创建一个新的项目&#xff08;模块&am…

java实现docx,pdf文件动态填充数据

一&#xff0c;引入pom 根据需求引入自己所需pom org.apache.poi poi 4.1.1 org.apache.poi poi-ooxml 4.1.1 org.jxls jxls 2.6.0 ch.qos.logback logback-core org.jxls jxls-poi 1.2.0 fr.opensagres.xdocreport fr.opensagres.xdocreport.core 2.0.2 fr.opensagres.xdocrep…

【CSS】文本效果

文本溢出、整字换行、换行规则以及书写模式 代码&#xff1a; <style> p.test1 {white-space: nowrap; width: 200px; border: 1px solid #000000;overflow: hidden;text-overflow: clip; }p.test2 {white-space: nowrap; width: 200px; border: 1px solid #000000;ove…

深入探索Spring框架:解密核心原理、IOC和AOP的奥秘

深入探索Spring框架&#xff1a;解密核心原理、IOC和AOP的奥秘 1. 理解 Spring 的核心原理1.1 控制反转&#xff08;IOC&#xff09;1.2 面向切面编程&#xff08;AOP&#xff09; 2. 深入 IOC 容器的实现机制2.1 容器的创建2.2 Bean 的生命周期2.3 依赖注入 3. 深入 AOP 的实现…

IP 协议的相关特性和数据链路层相关知识总结

目录 IP 协议的相关特性 一、IP协议的特性 二、 IP协议数据报格式 三、 IP协议的主要功能 1. 地址管理 动态分配 IP地址 NAT机制 NAT背景下的通信 IPV6 2. 路由控制​​​​​​​ 3.IP报文的分片与重组 数据链路层相关知识 1、以太网协议&#xff08;Ethernet&#xff09; 2.M…

SpringBoot系列---【SpringBoot在多个profiles环境中自由切换】

SpringBoot在多个profiles环境中自由切换 1.在resource目录下新建dev&#xff0c;prod两个目录&#xff0c;并分别把dev环境的配置文件和prod环境的配置文件放到对应目录下&#xff0c;可以在配置文件中指定激活的配置文件&#xff0c;也可以默认不指定。 2.在pom.xml中最后位置…

php从静态资源到动态内容

1、从HTML到PHP demo.php:后缀由html直接改为php,实际上当前页面已经变成了动态的php应用程序脚本 demo.php: 允许通过<?php ... ?>标签,添加php代码到当前脚本中 php标签内部代码由php.exe解释, php标签之外的代码原样输出,仍由web服务器解析 <!DOCTYPE html>…

zabbix案例--zabbix监控Tomcat

目录 一、 部署tomcat 二、配置zabbix-java-gateway 三、配置zabbix-server 四、配置zabbix-web界面 一、 部署tomcat tar xf apache-tomcat-8.5.16.tar.gz -C /usr/local/ ln -sv /usr/local/apache-tomcat-8.5.16/ /usr/local/tomcat cd /usr/local/tomcat/bin开启JMX…

KCC@广州开源读书会广州开源建设讨论会

亲爱的开源读书会朋友们&#xff0c; 在下个周末我们将举办一场令人激动的线下读书会&#xff0c;探讨两本引人入胜的新书《只是为了好玩》和《开源之迷》。作为一个致力于推广开源精神和技术创新的社区&#xff0c;这次我们还邀请了圈内大咖前来参与&#xff0c;会给大家提供一…

手机出现 不读卡 / 无信号时应该怎么办?

当手机屏幕亮起&#xff0c;一般在屏幕最上方都会有代表手机卡状态的显示&#xff0c;其中网络信号和读卡状态的标识&#xff0c;依旧有很多人分不太清&#xff0c;更不清楚改怎么办了。 1、当我们的手机里有两张卡时&#xff0c;则会有两个信号显示 2、信号状态一般是由短到…

Markdown语法

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 Markdown语法目录 前言1.标题2.文本样式3.列表四.图片5.链接6.目录7.代码片7.表格8.注脚9.注释10.自定义列表11.LaTeX数学公式12.插入甘特图13.插入UML图14.插入Merimaid流程…

做海外游戏推广有哪些条件?

做海外游戏推广需要充分准备和一系列条件的支持。以下是一些关键条件&#xff1a; 市场调研和策略制定&#xff1a;了解目标市场的文化、玩家偏好、竞争格局等是必要的。根据调研结果制定适合的推广策略。 本地化&#xff1a;将游戏内容、界面、语言、货币等进行本地化&#…

Mendix 基础审计模块介绍

一、前言 作为售前顾问&#xff0c;帮助客户选型低代码产品是日常工作。考察一家低代码产品的好坏&#xff0c;其中一个维度就是产品的成熟度。产品成熟度直接影响产品在使用中的稳定性和用户体验&#xff0c;对于新工具导入和可持续运用至关重要。 那怎么考察一个产品是否成…

input输入框自动填充后消除背景色

一般自动填充后会有一个突出的浅蓝色背景&#xff0c;一定也不好看&#xff0c;所以想把它去掉&#xff1a; 这个时候&#xff0c;就要用到浏览器的样式设置了&#xff1a; input:-webkit-autofill {background: transparent;transition: background-color 50000s ease-in-ou…

matlab使用教程(12)—随机数种子和随机数流

1.生成可重复的随机数 1.1指定种子 本示例显示如何通过首先指定种子来重复生成随机数数组。每次使用相同种子初始化生成器时&#xff0c;始终都可以获得相同的结果。首先&#xff0c;初始化随机数生成器&#xff0c;以使本示例中的结果具备可重复性。 rng( default ); 现在…

护眼灯值不值得买?什么护眼灯对眼睛好

想要选好护眼台灯首先我们要知道什么是护眼台灯&#xff0c;大的方向来看&#xff0c;护眼台灯就是可以保护视力的台灯&#xff0c;深入些讲就是具备让灯发出接近自然光特性的光线&#xff0c;同时光线不会伤害人眼而出现造成眼部不适甚至是视力降低的照明设备。 从细节上看就…

迁移协调器 - 就地迁移模式

在本系列博客的第一部分中&#xff0c;我们从高层级视角介绍了 Migration Coordinator 提供的所有模式&#xff0c;Migration Coordinator 是内置于 NSX 中的完全受 GSS 支持的工具&#xff0c;可将 NSX for vSphere 迁移到 NSX (NSX-T)。 本系列的第二篇博客将详细介绍就地迁…

问题记录和细节补充(完善中)

【问题记录】ORA-01400: 无法将 NULL 插入 Ajax 调用为Execute Server-Side Code返回了服务器错误ORA-01400: 无法将 NULL 插入 ("YWJA"."DEPT_TEST_WXX2"."DEPT_ID")。 原因&#xff1a;主键非自增&#xff0c;输入时并未有主键值传递&#x…

使用phpstorm开发调试thinkphp

1.环境准备 1.开发工具下载&#xff1a;PhpStorm: PHP IDE and Code Editor from JetBrains 2.PHP下载&#xff1a;PHP: Downloads 3. PHP扩展&#xff1a;PECL :: Package search 4.用与调试的xdebug模块&#xff1a; Xdebug: Downloads xdebug模块&#xff0c;如果是php8以…