量化交易策略:定义及其重要性

在这里插入图片描述
量化交易是华尔街和硅谷的秘密结合点,在这里数学和算法与金钱和市场相遇。虽然它曾经是金融巨头的专属领域,但现在它比以往任何时候都更易于接触。

但不要被愚弄,量化交易仍然是一种高速、高压的游戏,在毫秒间可以赚到或失去财富。你需要一种独特的技能组合,包括技术技能、金融知识和合适的工具来支持你。

加入我们,探索量化交易的美妙世界。我们将解释它是什么,如何运作,并揭示提升你的策略的顶级技术。

让我们开始吧!

首先:什么是量化交易?

想象一下你在赌场桌前,但不是依赖运气和主观直觉,而是依靠数学模型和算法告诉你确切的下注时机和金额。

这就是量化交易,它完全是关于使用数学计算和算法来识别交易机会。

任何量化交易策略都有四个主要组成部分:

  1. 建模/策略识别:惊不惊讶,找到有利可图的交易策略是交易中最难的挑战之一(在一项调查中约有50%的交易员将其列为最难)。你通过统计分析、机器学习和其他旨在识别盈利机会的建模技术来击败赔率。
  2. 回测: 让你的模型进行测试。历史数据帮助你在无损环境中分析和基准模型表现。
  3. 执行:这是表演时间!理论变为实践的地方,你在实时中识别和执行交易。
  4. 风险管理:因为没有人能预测一切。量化交易总是包括风险缓解技术,如止损,万一一切都对你不利的备份计划。

在金融服务行业中,量化分析师执行上述所有任务以及无数其他任务,以捕捉和控制日益复杂的金融市场。

目标总是在移动,虽然上述四种技术是基础,但总有空间构建更复杂、更准确和更细致的模型。

什么是量化交易员?

量化交易员,或“量化”,不像老派的华尔街交易员那样依赖流畅的谈话和自信,而是使用数学和科学来摆脱情感并发现客观的交易机会。

量化交易员的技能与过去的交易员截然不同:

  • 编程语言如 C++、Python 和 R,用于构建交易模型和算法
  • 统计分析和机器学习技术,用于识别模式和进行预测
  • 高性能计算平台,用于运行复杂的模拟和回测
  • 数据分析和可视化工具,用于探索和理解大数据集

寻找有关量化交易构建的详细信息?请查看《C++ 构建加速在量化中的关键作用》。

量化交易与算法交易

简单介绍一下,因为你可能会想,“量化交易和算法交易不是一样的吗?”

嗯,不完全是。算法交易使用自动化系统来跟踪图表模式并根据这些信息执行交易。另一方面,量化交易更多是关于分析数据以找到机会,但不一定自动执行交易。

话虽如此,两者之间有很大的重叠,许多量化分析师和交易员使用算法来执行交易,作为其整体策略的一部分。

量化交易的优缺点

近年来,金融市场对量化交易的兴趣激增,但它仍然有其优缺点。

以下是快速概述:

优点

  • 没有人为干预: 量化交易理论上去除了人类情感的干扰。它基于冷硬数据,意味着人为错误的空间较小。
  • 较少的认知错误:与上述相连,假设模型接收到正确的数据,认知偏差导致错误决策的可能性较低。计算机只是处理数据,没有确认偏差、锚定偏差和近期偏差。
  • 可以从过去学习: 回测允许你微调模型,看看它们在历史市场条件下的表现。
  • 处理大数据集的能力: 通过正确的构建,模型可以在眨眼间处理数据。随着大数据和机器学习技术的爆炸式增长,这对量化交易员来说是一个巨大的优势。
  • 全天候交易: 交易是全天候进行的。量化交易模型不需要咖啡因滴注来全天候工作。

缺点

  • 需要编码技能: 如果你不是编码高手,量化交易有一个陡峭的学习曲线。了解像 C++、Python 和 R 这样的编程语言是必不可少的。
  • 曲线拟合难题:由于量化金融交易严重依赖历史数据,有时可能会陷入曲线拟合的陷阱,假设过去的模式会在未来继续。跟我们重复一遍:过去的表现不能保证未来的结果。
  • 技术故障: 虽然量化交易去除了人为因素,但它仍然容易受到技术错误的影响,这些错误可能会偏向模型或导致不可靠的输出。

五种量化交易策略

既然我们已经介绍了基础知识,让我们深入探讨一些最常见的量化交易策略:

均值回归

均值回归假设价格最终会回到均值或平均值,就像被拉伸的橡皮筋,价格最终会反弹回原来的形状。

遵循这种技术意味着买入相对于其历史均值变得低估的股票,卖出变得高估的股票。

趋势跟踪

另一方面,趋势跟踪策略假设价格在一个方向上移动将继续如此。就像保龄球一样,一些价格具有持续滚动的动量。

趋势跟踪者希望买入趋势向上的资产,卖出趋势向下的资产。他们认为,市场趋势由于动量、羊群行为和信息不对称等因素而持续存在。

统计套利

统计套利利用相关证券之间的价格差异并试图从中获利。想象一下,在商店里发现一个定价错误的物品,然后购买它以快速获利,这就是套利。

当发现价格偏离时,量化交易员会买入低估的证券并卖出高估的证券,从而获利。

算法模式识别

算法模式识别发现市场数据中人类几乎看不见的复杂趋势。算法可以扫描大量历史数据,识别可能表明当前和未来交易机会的重复模式。

机器学习技术,如神经网络和决策树,在这里变得非常流行。摩根大通发现 61% 的机构投资者认为,人工智能和机器学习将在未来几年塑造交易的未来。

情感分析

另一种由机器学习驱动的策略,情感分析涉及分析新闻、社交媒体和其他来源,以判断人们对某个公司、市场、行业等的看法。

这个想法是,公众舆论和市场心理以可预测的方式影响资产价格。及早捕捉到情绪,你可以在别人之前开立有利可图的头寸。

使用 Incredibuild 提升你的量化交易

探索量化交易的奇妙世界很有趣吧?很高兴你在这里!

在你和我们在一起的时候,你听说过 Incredibuild 吗?

这是一个强大的开发加速平台,可以显著提升基于 C++ 的量化交易分析的性能。使用 Incredibuild,你可以加速你的回测、策略开发和风险分析,这样你可以花更多的时间寻找那些有利可图的交易,花更少的时间等待代码编译。

以下是 Incredibuild 为量化开发者提供的一部分内容:

  • 更快的构建时间,使你能够快速迭代和大规模测试策略
  • 分布式计算能力,利用高端处理能力运行复杂的模拟
  • 与流行的 C++ 集成开发环境和构建工具无缝集成

请记住,虽然 Incredibuild 可以提升你的量化策略,但在执行之前,始终要仔细检查你的代码和情绪。

想要将你的量化交易策略提升到另一个层次吗?Incredibuild 是你的入场券。

立即注册开始吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/749330.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ManageEngine连续荣登Gartner 2024年安全信息和事件管理魔力象限

我们很高兴地宣布,ManageEngine再次在Gartner的安全信息和事件管理(SIEM)魔力象限中榜上有名,这是我们连续第七年获得这一认可。 Gartner ManageEngine Log360是一款全面的SIEM解决方案,旨在帮助组织有效处理日志数据…

Quads,一个无敌的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个无敌的 Python 库 - Quads。 Github地址:https://github.com/fogleman/Quads 在科学计算和工程应用中,数值积分是一个常见的问题。Python的Quads库…

Java基础知识整理笔记

目录 1.关于Java概念 1.1 谈谈对Java的理解? 1.2 Java的基础数据类型? 1.3 关于面向对象的设计理解 1.3.1 面向对象的特性有哪些? 1.3.2 重写和重载的区别? 1.3.3 面向对象的设计原则是什么? 1.4 关于变量与方…

vite 创建vue3项目 集成 ESLint、Prettier、Sass等

在网上找了一大堆vue3脚手架的东西,无非就是vite或者vue-cli,在vue2时代,vue-cli用的人挺多的,也很好用,然而vue3大多是和vite搭配搭建的,而且个人感觉vite这个脚手架并没有那么的好用,搭建项目时只能做两个…

McgsPro初级使用教程

MCGS触摸屏 1.也被称为昆仑通态触摸屏,是一款在工业自动化领域广泛应用的触摸屏产品。 2.以其高度可靠、多点触控、防水防尘、宽温设计、强大的通信能力、多样化的显示内容、灵活的组态设计和丰富的脚本编程等特点,成为工业自动化领域的强大伙伴。 下载好…

科技创新前沿:Web3在全球发展中的角色

随着数字技术的快速发展,Web3作为新一代互联网技术正逐渐引领着全球科技创新的潮流。本文将深入探讨Web3技术的定义、特点,以及它在全球范围内的应用和未来发展的前景。 1. 引言:Web3技术的定义与演进 Web3是指建立在区块链技术和加密经济学…

还在花钱做数据可视化?为大家推荐一款免费可视化工具

在当今数据驱动的世界里,数据可视化已经成为不可或缺的工具,帮助我们更好地理解和分析信息。然而,许多企业和个人仍在为昂贵的可视化软件买单,承受着高昂的费用和复杂的操作流程。因此,作为一个经常接触数据可视化的相…

常微分方程算法之编程示例六-解一阶方程组(龙格-库塔法)

目录 一、研究问题 二、C++代码 三、计算结果 一、研究问题 本节我们采用龙格-库塔法(Runge-Kutta法)求解一阶方程组初值问题。 之前我们已经利用龙格-库塔法求解常微分方程问题,详见: 常微分方程算法之编程示例四(龙格-库塔法)-CSDN博客https://blog.csdn.net/L_pea…

MTK平台Android13实现三方launcher为默认

一、前言 目前有遇到客户的定制需求,希望使用三方的launcher作为默认的launcher使用,一般情况下直接将三方launcher通过内置到系统并通过overlay机制即可很方便的实现launcher的替换,但是存在一个问题,需要增加ROM的维护成本。本文通过设备在使用前联网通过后台下发三方lau…

CPU的功能和基本结构

目录 一. 运算器的基本结构1.1. 专用数据通路方式1.2 CPU内部单总线方式 \quad 每执行完一条指令之后, CPU都会检查一下是否有中断处理(比如鼠标的点击操作,或出现的异常情况) \quad 一. 运算器的基本结构 \quad 1.1. 专用数据通路方式 \quad 对于X86架构的CPU来说, 通用寄存器…

vs code python开发笔记

目录 安装插件 不全: 2.选择python解释器 安装插件 不全: remote ssh python debuger 左下角,点击左右左右箭头,远程连接到ssh 2.选择python解释器 ctrlshiftP打开VSCode的命令行,输入python: select Interpreter…

数据分析:置换检验Permutation Test

欢迎大家关注全网生信学习者系列: WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2 介绍 置换检验是一种非参数统计方法,它不依赖于数据的分布形态,因此特别适…

上班族真的有必要买智能猫砂盆吗?解放双手刻不容缓!

养猫家庭真是出不了一点远门,但凡外出的时间久了,家里的猫屎就堆积成山,不及时铲掉的话,回来一进门就能在猫砂盆中挖出满满当当的“宝藏”,仔细一闻还能闻到空气中散发的阵阵“清香”。忍无可忍的我最后借助科技的力量…

探索强化学习(人工智能重要子领域):原理、算法及应用

引言 人工智能(Artificial Intelligence, AI)作为一个广泛的领域,旨在使机器具备模仿或超越人类智能的能力。机器学习(Machine Learning, ML)是实现这一目标的重要手段,通过数据驱动的方法,使机…

Android笔记-adb keycode大全

使用方法 用adb发送按键事件时,可以使用下面表中的枚举值或者直接使用数值,比如 adb shell input keyevent KEYCODE_HOME 或者 adb shell input keyevent 3 下面按三种排序方法列出所有按键的 keycode, 分别是: 按功能分 按枚…

keil仿真,查看函数执行时间和执行次数

Execution Profiler执行档案器 The Execution Profiler records timing and execution statistics about instructions for the complete program code. To view the values in the Editor or Disassembly Window, use Show Time or Show Calls from the menu Debug — Executi…

Maven高级的聚合和继承

聚合和继承 我们的项目已经从以前的单模块,变成了现在的多模块开发。项目一旦变成了多模块开发以后,就会引发一些问题,在这一节中我们主要会学习两个内容聚合和继承,用这两个知识来解决下分模块后的一些问题。 3.1 聚合 分模块开…

风控图算法之社群发现算法(小数据集Python版)

风控图算法之社群发现算法(小数据集Python版) 在风险控制领域,图算法扮演着日益重要的角色。(这方面的资料有很多,不再赘述) 图算法在风控场景的应用 图分析方法在业务风控中的应用 特别是社群发现算法&a…

软件测试必看!5分钟掌握sql查询的聚合函数

数据查询操作之排序 语法格式: select * from 表名 order by 字段名 asc| desc 重点: 1 字段名可以有多个,如果字段名1 相同,再按照字段名2排序 2 默认情况下按照从小到大去排列 3 asc 就是从小到大排列 desc 从大到小排列 …

每个 Node.js 开发人员都应该知道的13个库(上)

1. Sequelize Sequelize是一个基于promise的Node.js对象关系映射器(ORM),它使开发人员更容易使用关系数据库。 支持PostgreSQL,MySQL,MariaDB,SQLite和更多数据库。 Sequelize使用JavaScript对象对数据库…