论文阅读——Adversarial Eigen Attack on Black-Box Models

Adversarial Eigen Attack on Black-Box Models

作者:Linjun Zhou, Linjun Zhou

攻击类别:黑盒(基于梯度信息),白盒模型的预训练模型可获得,但训练数据和微调预训练模型的数据不可得(这意味着模型的网络结构和参数信息可以获得)、目标攻击+非目标攻击
白盒+黑盒组合使用,白盒利用了中间表示,黑盒利用了输出得分。

  • 疑问
    Q1: 基于梯度信息生成对抗样本,如何保证迁移能力
    A1: 似乎没有像常规方法一样考虑迁移性
    Q2: 预训练模型选的啥?
    A2: 用不到预训练模型

解决的问题:

替代模型的训练需要已知训练数据+降低查询量+保证扰动小

  • 替代模型的训练需要已知训练数据:白盒模型的特征表示和黑盒模型的输出概率得分;
  • 降低查询量:根据方向当属估计梯度减少梯度估计采样的样本,使用截断奇异值确定进一步降低查询量;
  • 保证扰动小:每次扰动的寻优都约束到 L 2 L_2 L2范数球上。

黑盒攻击现状

黑盒攻击分为两类:
基于梯度估计的对抗攻击: 描述了一个纯黑盒攻击设置,其中可用的信息只是黑盒模型的输入和输出。在此设置中使用的常用技术是零阶优化[8]。与白盒攻击不同的是,黑盒攻击中不存在与网络参数相关的梯度信息。梯度需要通过采样不同方向的扰动和汇总与输出相关的某个损失函数的相对变化来估计。
基于替代模型(substitute model)的对抗攻击:使用来自训练数据集的侧信息。通常,在给定的训练数据集上训练一个替代的白盒模型。

方案概述:

将白盒攻击和黑盒攻击相结合。通过将白盒模型的中间表示到黑盒模型输出的映射看作一个黑盒函数,在表示空间上形成一个替代的黑盒攻击设置,可以应用黑盒攻击的常见做法。另一方面,从原始输入到中间表示层的映射是预训练模型的一部分,可以看作是一个白盒设置。值得注意的是,该框架可以处理两个模型相同或不同的分类类别,增强了其实际应用场景。使用预训练白盒网络的表示空间有助于提高黑盒模型的攻击效率的主要原因是,深度神经网络的较低层,即表示学习层,在不同的数据集或数据分布之间是可转移的。

白盒模型:

G ( x ) = g ∘ h ( x ) G(x) = g \circ h(x) G(x)=gh(x) h ( x ) h(x) h(x)表示原始输入到低维表示空间的映射, g g g表示输出概率的表示空间映射, g : R m → [ 0 , 1 ] c w g:{\mathbb{R}^m} \to {[0,1]^{{c_w}}} g:Rm[0,1]cw c w {c_w} cw表示G输出类别的数量;

黑盒模型:

F : R n → [ 0 , 1 ] c b F:{\mathbb{R}^n} \to {[0,1]^{{c_b}}} F:Rn[0,1]cb, c b {c_b} cb表示F输出类别的数量, c b {c_b} cb c w {c_w} cw可能不相等。

  • 疑问
    Q1: 如何对齐白盒模型和黑盒模型的输出概率分布的?存在两种情况:黑盒模型和白盒模型的输出概率分布不一致或者输出概率类别的长度可能不同?
    A1: 为解决上述问题,作者并没有使用白盒模型的参数,而是使用白盒模型的中间表示 z = h ( x ) z = h(x) z=h(x)和新的映射函数 g ~ : R m → [ 0 , 1 ] c b \tilde g:{\mathbb{R}^m} \to {[0,1]^{{c_b}}} g~:Rm[0,1]cb(被攻击黑盒模型的输出的表示空间)。类比白盒模型的定义,若 g ~ \tilde g g~存在,则可获得黑盒模型 F = g ~ ∘ h ( x ) F = \tilde g \circ h(x) F=g~h(x)

基于上述定义,黑盒攻击的优化目标函数为:

min ⁡ δ p F ( y ∣ x + δ ) ⇒ min ⁡ δ p g ∘ h ( y ∣ x + δ )   s . t . ,   ∣ ∣ δ ∣ ∣ 2 < ρ \mathop {\min }\limits_\delta {p_F}(y|x + \delta ) \Rightarrow \mathop {\min }\limits_\delta {p_{g \circ h}}(y|x + \delta ){\text{ }}s.t.,{\text{ }}||\delta |{|_2} < \rho δminpF(yx+δ)δminpgh(yx+δ) s.t., ∣∣δ2<ρ
x t + 1 = x t − ε ∇ x [ F ( x ; θ ) ] {x_{t + 1}} = {x_t} - \varepsilon {\nabla _x}[F(x;\theta )] xt+1=xtεx[F(x;θ)] (1)

∇ x [ F ( x ; θ ) ] {\nabla _x}[F(x;\theta )] x[F(x;θ)]通过采样一些扰动和汇总输出的相对变化来估计,但是在每次迭代时估计梯度,会消耗的大量的样本,这不利于提升攻击效率。为解决这一问题作者将梯度 ∇ x [ F ( x ; θ ) ] {\nabla _x}[F(x;\theta )] x[F(x;θ)]拆分如下:

∇ x [ F ( x ; θ ) ] = J h ( x ) T ∇ z [ g ~ ( z ; θ ~ ) y ] {\nabla _x}[F(x;\theta )] = {J_h}{(x)^T}{\nabla _z}[\tilde g{(z;\tilde \theta )_y}] x[F(x;θ)]=Jh(x)Tz[g~(z;θ~)y] (2)

J h ( x ) {J_h}{(x)} Jh(x)是关于 h h h m ∗ n m*n mn雅克比矩阵 ∂ ( z 1 , z 2 , ⋯   , z m ) ∂ ( x 1 , x 2 , ⋯   , x n ) \frac{{\partial ({z_1},{z_2}, \cdots ,{z_m})}}{{\partial ({x_1},{x_2}, \cdots ,{x_n})}} (x1,x2,,xn)(z1,z2,,zm), z z z是特征空间表示,也就是 h h h的输出。但 ∇ z [ g ~ ( z ; θ ~ ) y ] {\nabla _z}[\tilde g{(z;\tilde \theta )_y}] z[g~(z;θ~)y] g ~ \tilde g g~是黑盒模型,因此需要采样估计 ∇ z [ g ~ ( z ; θ ~ ) y ] {\nabla _z}[\tilde g{(z;\tilde \theta )_y}] z[g~(z;θ~)y] y y y表示 g ~ \tilde g g~输出的第 y y y个成分。

根据方向倒数的定义可知,
∇ z [ g ~ ( z ; θ ~ ) y ] = ∑ i = 1 m ( ∂ g ~ ( z ; θ ~ ) y ∂ l ⃗ i ∣ z ⋅ l ⃗ ) , l ⃗ 1 , l ⃗ 2 , ⋯   , l ⃗ m  are orthogonal {\nabla _z}[\tilde g{(z;\tilde \theta )_y}] = \sum\limits_{i = 1}^m {(\frac{{\partial \tilde g{{(z;\tilde \theta )}_y}}} {{\partial {{\vec l}_i}}}{|_z} \cdot \vec l)} ,{{\vec l}_1},{{\vec l}_2}, \cdots ,{{\vec l}_m}{\text{ are orthogonal}} z[g~(z;θ~)y]=i=1m(l ig~(z;θ~)yzl ),l 1,l 2,,l m are orthogonal (3)

我们可以通过每次迭代使用m个样本,从一组正交基中迭代地设置 z z z的扰动方向,来估计 ∇ z [ g ~ ( z ; θ ~ ) y ] {\nabla _z}[\tilde g{(z;\tilde \theta )_y}] z[g~(z;θ~)y]。但是使用上述方法估计 ∇ z [ g ~ ( z ; θ ~ ) y ] {\nabla _z}[\tilde g{(z;\tilde \theta )_y}] z[g~(z;θ~)y]会消耗巨大的查询预算。为解决这一问题,作者通过牺牲估计精度来降低查询量。具体而言,首先设计EigenBA算法来寻找表示空间的标准基,

l ⃗ i = J h ( x ) δ i {{\vec l}_i} = {J_h}(x){\delta _i} l i=Jh(x)δi (4)

δ i {\delta _i} δi是原始输入空间上的扰动,会导致表示空间变成 l ⃗ i {{\vec l}_i} l i。最优的扰动可求解为:
在这里插入图片描述
作者对上述等式求解获得最优的 δ 1 , δ 2 , ⋯   , δ m {\delta _1},{\delta _2}, \cdots ,{\delta _m} δ1,δ2,,δm

因此,如果我们将扰动依次迭代采样到 δ 1 , δ 2 , ⋯   , δ m {\delta _1},{\delta _2}, \cdots ,{\delta _m} δ1,δ2,,δm,则一步实际扰动 ∇ x [ F ( x ; θ ) ] {\nabla _x}[F(x;\theta )] x[F(x;θ)]可以用公式2和式3来近似,并且,由于特征值的迹可能很小,即表征空间的扰动范数可能对具有相应特征向量方向的原始输入空间上的扰动不敏感。为了在不牺牲太多攻击效率的情况下减少查询数,作者只保留探测的top-K扰动 δ 1 , δ 2 , ⋯   , δ K {\delta _1},{\delta _2}, \cdots ,{\delta _K} δ1,δ2,,δK。通过对雅可比矩阵J进行截断奇异值分解(SVD),只保留前K个分量,可以快速计算出 J T J {J^T}J JTJ的特征向量。

上述过程的伪代码如下:
在这里插入图片描述
迭代扰动寻优过程中的参数定义似乎不全!

实验

1、数据集:ImageNet、Cifar-10
2、对比方法:SimBA-DCT、Trans-FGM
3、评估指标:攻击一张样本的平均查询量、攻击成功率、对抗扰动的 L 2 {L_2} L2 L ∞ {L_\infty } L范数
4、实验模块:不同查询量下非目标攻击和目标攻击的攻击性能测试+消融研究

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/74359.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序data-item设置获取不到数据的问题

微信小程序data-item设置获取不到数据的问题 简单说明&#xff1a; 在微信小程序中&#xff0c;通过列表渲染使用wx:for根据数组中的每一项重复渲染组件。同时使用bindtap给每一项绑定点击事件clickItem&#xff0c;再通过data-item绑定数据。 **问题&#xff1a;**通过data-i…

【SQL应知应会】索引(二)• MySQL版

欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享&#xff0c;与更多的人进行学习交流 本文收录于SQL应知应会专栏,本专栏主要用于记录对于数据库的一些学习&#xff0c;有基础也有进阶&#xff0c;有MySQL也有Oracle 索引 • MySQL版 前言一、索引1.简介2.创建2.1 索引…

【计算机视觉|生成对抗】带条件的对抗网络进行图像到图像的转换(pix2pix)

本系列博文为深度学习/计算机视觉论文笔记&#xff0c;转载请注明出处 标题&#xff1a;Image-to-Image Translation with Conditional Adversarial Networks 链接&#xff1a;Image-to-Image Translation with Conditional Adversarial Networks | IEEE Conference Publicati…

解决ElementUI动态表单校验验证不通过

这里记录一下&#xff0c;写项目时遇到的一个问题&#xff1a;就是动态渲染的表单项&#xff0c;加验证规则后一直不通过&#xff01;&#xff01;&#xff01; 原代码 html部分&#xff1a; <el-form-itemv-for"(teaclass,index) in addFom.classIds":label&quo…

Android Sutdio 导入libs文件夹下的jar包没反应

有点离谱&#xff0c;笨笨的脑子才犯的错误 首先发现问题&#xff1a;转移项目的时候 直接复制粘贴libs文件夹下的jar包到新项目&#xff0c;在build.gradle文件下 使用语句并应用也没反应&#xff08;jar包没有出现箭头且代码报错&#xff0c;找不到&#xff09; implementa…

2023全球创见者大会|企企通总架构师杨华:基于SRM的电子发票解决方案, 破局企业开票困局

01、2023全球创见者大会 2023年8月8日&#xff0c;金蝶30周年庆典&2023全球创见者大会在深圳国际会展中心隆重举行。现场吸引了4000与会来宾齐聚一堂&#xff0c;超过100位演讲嘉宾组成豪华阵容&#xff0c;举办16场行业峰会&#xff0c;呈现了一场数字化领域备受瞩目…

Vue学习之条件渲染

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title>条件渲染</title><!--引入Vue--><script type"text/javascript" src"../vue.js"></script></head><body><!--…

【二开】jeecgboot 开发过程方法扩展二开整理

【二开】jeecgboot 开发过程方法扩展二开整理 org.jeecg.modules.system.controller.CommonController#upload 可以二开统一文件上传 返回值增加文件大小 跟文件名称 //自定义 图片前缀savePath jeecgBaseConfig.getUploadRequestHost() savePath;if(oConvertUtils.isNotEm…

ES 概念

es 概念 Elasticsearch是分布式实时搜索、实时分析、实时存储引擎&#xff0c;简称&#xff08;ES&#xff09;成立于2012年&#xff0c;是一家来自荷兰的、开源的大数据搜索、分析服务提供商&#xff0c;为企业提供实时搜索、数据分析服务&#xff0c;支持PB级的大数据。 -- …

【数据库】Sql Server可视化工具SSMS条件和SQL窗格以及版本信息

2023年&#xff0c;第34周&#xff0c;第1篇文章。给自己一个目标&#xff0c;然后坚持总会有收货&#xff0c;不信你试试&#xff01; SQL SERVER 官方本身就有数据库可视化管理工具SSMS&#xff0c;所以大部分都会使用SSMS。以前版本是直接捆绑&#xff0c; 安装完成就自带有…

使用 AndroidX 增强 WebView 的能力

在App开发过程中&#xff0c;为了在多个平台上保持一致的用户体验和提高开发效率&#xff0c;许多应用程序选择使用 H5 技术。在 Android 平台上&#xff0c;通常使用 WebView 组件来承载 H5 内容以供展示。 一.WebView 存在的问题 自 Android Lollipop 起&#xff0c;WebVie…

LeetCode150道面试经典题-- 存在重复元素 II(简单)

1.题目 给你一个整数数组 nums 和一个整数 k &#xff0c;判断数组中是否存在两个 不同的索引 i 和 j &#xff0c;满足 nums[i] nums[j] 且 abs(i - j) < k 。如果存在&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 2.示例 示例 1&#xff1a; 输…

小米发布会:雷军成长故事与创新壮举,AI大模型技术引领未来,雷军探索之路之从创业波折到小米AI领航,成就高端化传奇!

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

PPT颜色又丑又乱怎么办?

一、设计一套PPT时&#xff0c;可以从这5个方面进行设计 二、PPT颜色 &#xff08;一&#xff09;、PPT常用颜色分类 一个ppt需要主色、辅助色、字体色、背景色即可。 &#xff08;二&#xff09;、搭建PPT色彩系统 设计ppt时&#xff0c;根据如下几个步骤&#xff0c;依次选…

【软件工程质量】代码质量管理平台Sonar

分析代码质量的工具有挺多的&#xff0c;比如&#xff1a;Alibaba Java Coding Guidelines plugin、QAPlug、SonarQube 等&#xff0c;平时用的比较多的事Alibaba Java Coding Guidelines plugin和sonarlint。 SonarQube 是一个用于管理源码质量的平台&#xff0c;帮助开发者…

SyntaxError: Cannot use import statement outside a module

node环境运行报错&#xff1a; 解决步骤&#xff1a; 1. npm init -y 2. 在 package.json 文件中加入一条&#xff1a;"type": "module", 3. 保存后再执行即可 附&#xff1a;最好是不要在node用import&#xff0c;否则需要上次配置 建议1&#xff1a;用re…

如何运用小程序技术闭环运营链路?

如何通过线上小程序获取用户线索&#xff0c;提高企业抗风险能力&#xff0c;建立有效的营销数字化系统一直是困扰每一个小程序开发者与运营者的问题。 当我们选择使用小程序设计自己的运营流程时&#xff0c;从「推广」到「转化」&#xff0c;再到最终的「留存」都是运营过程…

Kubernetes 部署DolphinScheduler 创建租户失败

创建租户 报错创建租户失败。后台日志如下 源代码跟踪 org.apache.dolphinscheduler.api.service.impl.TenantServiceImpl / if hdfs startup if (PropertyUtils.getResUploadStartupState()) {createTenantDirIfNotExists(tenantCode); }需要将 resource.storage.type 置为…

SpringBoot-Hello World

SpringBootWeb快速入门 创建Springboot工程&#xff0c;并勾选web开发相关依赖定义HelloController类&#xff0c;添加方法hello&#xff0c;并添加相关注释运行测试 创建新的SpringBoot项目 几个注意的点&#xff1a; Name&#xff1a;基本上不用管&#xff0c;会根据下面的Ar…

基于STM32CUBEMX驱动TMOS模块STHS34PF80(4)----中断获取信号

基于STM32CUBEMX驱动TMOS模块STHS34PF80----4.中断获取信号 概述样品申请视频教程参考Demo参考程序中断中断生成设置中断开启存在检测中断输出配置中断管脚主程序测试结果 概述 HS34PF80的数据准备信号提供了一种机制&#xff0c;允许设备在新的测量数据可读取时通知系统&…