sheng的学习笔记-聚类(Clustering)

 ai目录  sheng的学习笔记-AI目录-CSDN博客

 

基础知识

什么是聚类

在“无监督学习”(unsupervised learning)中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础。此类学习任务中研究最多、应用最广的是“聚类”(clustering)。

对聚类算法而言,样本簇亦称“类”。

聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”(cluster)。通过这样的划分,每个簇可能对应于一些潜在的概念(类别),如“浅色瓜”“深色瓜”,“有籽瓜”“无籽瓜”,甚至“本地瓜”“外地瓜”等;需说明的是,这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇所对应的概念语义需由使用者来把握和命名。

聚类任务中也可使用有标记训练样本,但样本的类标记与聚类产生的簇有所不同

聚类的应用场景

在一些商业应用中需对新用户的类型进行判别,但定义“用户类型”对商家来说却可能不太容易,此时往往可先对用户数据进行聚类,根据聚类结果将每个簇定义为一个类,然后再基于这些类训练分类模型,用于判别新用户的类型

性能度量

  1. 聚类的性能度量也称作聚类的有效性指标validity index 。

  2. 直观上看,希望同一簇的样本尽可能彼此相似,不同簇的样本之间尽可能不同。即:簇内相似度intra-cluster similarity高,且簇间相似度inter-cluster similarity低。

  3. 聚类的性能度量分两类:

    • 聚类结果与某个参考模型reference model进行比较,称作外部指标external index 。
    • 直接考察聚类结果而不利用任何参考模型,称作内部指标internal index 。

外部指标

Jaccard系数
 FM指数

Rand指数 

ARI指数 

 内部指标

DB指数 

Dunn指数

距离度量 

常用距离计算

数值和非数值属性混合

当样本的属性为数值属性与非数值属性混合时,可以将闵可夫斯基距离与 VDM 距离混合使用。 

加权距离

当样本空间中不同属性的重要性不同时,可以采用加权距离 

直递性

直递性常被直接称为“三角不等式”

这里的距离度量满足三角不等式:

需注意的是,通常我们是基于某种形式的距离来定义“相似度度量”(similarity measure),距离越大,相似度越小。然而,用于相似度度量的距离未必一定要满足距离度量的所有基本性质,尤其是直递性。

例如在某些任务中我们可能希望有这样的相似度度量:“人”“马”分别与“人马”相似,但“人”与“马”很不相似;要达到这个目的,可以令“人”“马”与“人马”之间的距离都比较小,但“人”与“马”之间的距离很大,此时该距离不再满足直递性;这样的距离称为“非度量距离”(non-metric distance)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/739812.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

智慧安防/边缘计算EasyCVR视频汇聚网关:EasySearch无法探测到服务器如何处理?

安防监控EasyCVR智能边缘网关/视频汇聚网关/视频网关属于软硬一体的边缘计算硬件,可提供多协议(RTSP/RTMP/国标GB28181/GAT1400/海康Ehome/大华/海康/宇视等SDK)的设备接入、音视频采集、视频转码、处理、分发等服务,系统具备实时…

都说HCIE“烂大街”了,说难考都是假的?

在网络技术领域,华为认证互联网专家(HCIE)长期以来被视为一项高端认证,代表着专业技能和知识水平。 然而,近几年来,考证的重视度直线上升,考HCIE的人越来越多了,考过的人好像也越来越…

桌面编辑器ONLYOFFICE 功能多样性快来试试吧!

目录 ONLYOFFICE 桌面编辑器 8.1 ONLYOFFICE介绍 主要功能和特点 使用场景 1.PDF编辑器 2.幻灯片版式 3.编辑,审阅和查看模式 4.隐藏连接到云版块 5.RTL语言支持和本地化选项 6.媒体播放器 7、其他新功能 8.下载 总结 ONLYOFFICE 桌面编辑器 8.1 官网地…

新火种AI|OpenAI CTO表示:未来将会有越来越多的人被AI所取代...

作者:小岩 编辑:彩云 对于“AI是否能最终取代人类进行工作”这件事儿,很多学者持有否定态度。大家普遍认为,即便如今诞生了ChatGPT,Claude等强大的AI工具,它们也只能够解决一些格式化,重复化的…

【力扣C++】爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 示例 1: 输入:n 2 输出:2 解释:有两种方法可以爬到楼顶。 1. 1 阶 1 阶 2. 2 阶 示例 2&#x…

鸿蒙开发系统基础能力:【@ohos.hidebug (Debug调试)】

Debug调试 说明: 本模块首批接口从API version 8开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。 使用hidebug,可以获取应用内存的使用情况,包括应用进程的静态堆内存(native heap)信息…

想要将视频做二维码,试试这个方法吧

视频内容做成二维码用于分享内容的一种常用方式,而且通过二维码来分享视频内容与传统方式相比也更加的方便,用户只需要扫描二维码就可以观看视频内容,在很多的使用场景中的都有应用。那么如何操作能够快速制作一个视频二维码呢? …

算法设计与分析:动态规划法求扔鸡蛋问题 C++

目录 一、实验目的 二、问题描述 三、实验要求 四、算法思想和实验结果 1、动态规划法原理: 2、解决方法: 2.1 方法一:常规动态规划 2.1.1 算法思想: 2.1.2 时间复杂度分析 2.1.3 时间效率分析 2.2 方法二:动态规划加…

光伏发电项目是如何提高开发效率的?

随着全球对可再生能源需求的持续增长,光伏发电项目的高效开发成为关键。本文将深入探讨如何在实际操作中提高光伏发电项目的开发效率。 一、优化选址流程 1、数据收集与分析:利用卫星地图和遥感技术,收集目标区域的光照资源、地形地貌、阴影…

Win11 docker build拉取镜像失败(无法访问镜像仓库)

目录 遇到的问题: 修改docker配置 写了一个dockerfile(基于python的镜像)文件,在生成时,一直报错,换了好几个仓库,都是不行(包括阿里、南大、官网、网易、Azure中国镜像等都不行) 遇到的问题: 连接超时…

视频云存储平台LntonCVS国标视频平台功能和应用场景详细介绍

LntonCVS国标视频融合云平台基于先进的端-边-云一体化架构设计,以轻便的部署和灵活多样的功能为特点。该平台不仅支持多种通信协议如GB28181、RTSP、Onvif、海康SDK、Ehome、大华SDK、RTMP推流等,还能兼容各类设备,包括IPC、NVR和监控平台。在…

Inception_V2_V3_pytorch

Inception_V2_V3_pytorch 在上一节我们已经精度了Inception_V2_V3这篇论文,本篇我们将用pyorch复现论文中的网络结构! 从论文中我们可以知道InceptionV3的主要改进为: 5 * 5卷积分解为2个3 * 3卷积核分解为不对称卷积滤波器组 我们可将GoogL…

【专利】一种光伏产品缺陷检测AI深度学习算法

申请号CN202410053849.9公开号(公开)CN118037635A申请日2024.01.12申请人(公开)超音速人工智能科技股份有限公司发明人(公开)张俊峰(总); 叶长春(总); 廖绍伟 摘要 本发明公开一种光伏产品缺陷检测AI深度…

区块链实验室(37) - 交叉编译百度xuperchain for arm64

纠结了很久,终于成功编译xuperchain for arm64。踩到1个坑,说明如下。 1、官方文档是这么说的:go语言版本推荐1.5-1.8 2、但是同一个页面,又是这么说的:不推荐使用1.11之前的版本。 3、问题来了:用什么版本…

ONLYOFFICE 编辑器8.1,一个功能全面的编辑器

目录 官网地址:ONLYOFFICE - 企业在线办公应用软件 | ONLYOFFICE 一、PDF编辑 二、PPT播放 1. 多样化的幻灯片样式与布局 2. 强大的文本编辑与格式化功能 3. 丰富的图形与图表插入功能 4. 灵活的过渡效果与动画设置 5. 舒适的呈现与演讲辅助功能 6. 便捷的团…

Mac清理系统数据小技巧,告别卡顿烦恼 苹果电脑清理内存怎么清理

任何使用Mac的用户都会同意:没有什么比一台运行缓慢的电脑更能消磨人的耐心了。那些无休止的彩球旋转、程序响应迟缓、突然的系统冻结,这一切都让人想抓狂!但别担心,这里有一些简单的Mac清理系统数据小技巧和CleanMyMac X的神助攻…

游戏高度可配置化(一)通用数据引擎(data-e)及其在模块化游戏开发中的应用构想图解

游戏高度可配置化(一)通用数据引擎(data-e)及其在模块化游戏开发中的应用构想图解 码客 卢益贵 ygluu 关键词:游戏策划 可配置化 模块化配置 数据引擎 条件系统 红点系统 一、前言 在插件式模块化软件开发当中,既要模块高度独…

DDD(data display debugger)调试工具

文章目录 DDD安装界面说明 DDD data display debugger是命令行调试程序,可以理解为可视化的GDB。 安装 CentOS下使用以下命令进行安装: yum install ddd等待安装完成即可。 界面说明 顺便写一个测试程序,编译可执行文件 终端命令行输入…

[C++深入] --- malloc/free和new/delete

1 new运算符的拓展 1.1 自由存储区与堆的概念 在C++中,内存区分为5个区,分别是堆、栈、自由存储区、全局/静态存储区、常量存储区。 自由存储区是C++基于new操作符的一个抽象概念,凡是通过new操作符进行内存申请,该内存即为自由存储区。 new操作符从自由存储区(free st…

十大排序算法之->基数排序

一、计数排序简介 基数排序(Radix Sort)是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。具体做法是用0-9之间的所有整数作为键值,对数据集中的每一个数,按照从…