AI 大模型企业应用实战(11)-langchain 的Document Loader机制

loader机制让大模型具备实时学习的能力:

0 Loader机制

案例环境准备:

import os

os.environ["OPENAI_API_KEY"] = "sk-javaedge"
os.environ["OPENAI_PROXY"] = "https://api.chatanywhere.tech"


import os
from dotenv import load_dotenv
# Load environment variables from openai.env file
load_dotenv("openai.env")

# Read the OPENAI_API_KEY from the environment
api_key = os.getenv("OPENAI_API_KEY")
api_base = os.getenv("OPENAI_API_BASE")
os.environ["OPENAI_API_KEY"] = api_key
os.environ["OPENAI_API_BASE"] = api_base

1 加载markdown

准备一个 md 文件:

# 我是一个markdown加载示例
- 第一项目
- 第二个项目
- 第三个项目

## 第一个项目
编程严选网,最厉害专业的AI研究基地

## 第二个项目
AIGC打造未来AI应用天地

## 第三个项目
编程严选网是一个非常牛逼的AI媒体
#使用loader来加载markdown文本
from langchain.document_loaders import TextLoader

loader = TextLoader("loader.md")
loader.load()

2 加载cvs

Project,DES,Price,People,Location
AI GC培训,培训课程,500,100,北京
AI工程师认证,微软AI认证,6000,200,西安
AI应用大会,AI应用创新大会,200门票,300,深圳
AI 应用咨询服务,AI与场景结合,1000/小时,50,香港
AI项目可研,可行性报告,20000,60,上海
#使用 CSVLoader 来加载 csv 文件
from langchain.document_loaders.csv_loader import CSVLoader

#loader = Loader(file_path="loader.")
loader = CSVLoader(file_path="loader.csv")
data = loader.load()
print(data)

3 加载html

先下包:

! pip install "unstructured[xlsx]"

加载文件目录

from langchain.document_loaders import UnstructuredHTMLLoader

loader = UnstructuredHTMLLoader("loader.html")
data = loader.load()
data

会加载 html 所有内容。

from langchain.document_loaders import BSHTMLLoader
loader = BSHTMLLoader("loader.html")
data = loader.load()
data

只加载去除标签后的关键内容:

4 加载JSON

先装 jq 包:

 ! pip install jq
from langchain.document_loaders import JSONLoader
loader = JSONLoader(
    file_path = "simple_prompt.json",jq_schema=".template",text_content=True
)
data = loader.load()
print(data)

5 加载PDF

先装包:

! pip install pypdf
from langchain.document_loaders import PyPDFLoader
loader = PyPDFLoader("loader.pdf")
pages = loader.load_and_split()
pages[0]

关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都架构师,多家大厂后端一线研发经验,在分布式系统设计、数据平台架构和AI应用开发等领域都有丰富实践经验。

各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化

  • 活动&券等营销中台建设

  • 交易平台及数据中台等架构和开发设计

  • 车联网核心平台-物联网连接平台、大数据平台架构设计及优化

  • LLM应用开发

    目前主攻降低软件复杂性设计、构建高可用系统方向。

参考:

  • 编程严选网

    本文由博客一文多发平台 OpenWrite 发布!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/737007.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

项目训练营第二天

项目训练营第二天 用户登录逻辑 1、账户名不少于4位 2、密码不少于8位 3、数据库表中能够查询到账户、密码 4、密码查询时用同样加密脱敏处理手段处理后再和数据库中取出字段进行对比,如果账户名未查询到,直接返回null 5、后端设置相应的脱敏后用户的s…

【IVIF】Equivariant Multi-Modality Image Fusion

2024CVPR Zixiang Zhao团队 分析透彻,方法耳目一新 统一融合架构 1、Motivation Our approach is rooted in the prior knowledge that natural imaging responses are equivariant to certain transformations 我们的方法根植于自然成像响应对于某些变换的等变性…

Go WebSocket入门+千万级别弹幕系统架构设计

Go实现WebSocket(千万级别弹幕系统架构设计) 1 websocket简介(基于HTTP协议的长连接) 使用WebSocket可以轻松的维持服务器端长连接,其次WebSocket是架构在HTTP协议之上的,并且也可以使用HTTPS方式,因此WebSocket是可靠…

C# 类中访问修饰符的优先级

参考链接 : C# 指南 - .NET 托管语言 | Microsoft Learn 访问修饰符 - C# | Microsoft Learn

OpenGL3.3_C++_Windows(17)

Demo演示 demo演示 绘制不同的图元(点,线…): 理解 glDrawArrays 和 glDrawElements的区别 glDrawArrays :渲染的图元模式mode(可以参考),起始位置,顶点数量glDrawElem…

Kafka中的数据本身就是倾斜的,使用FlinkSQL该如何处理

又是经历了一段不太平的变动,最近算是稳定了点,工作内容又从后端开发转换成了sql boy,又要开始搞大数据这一套了。不同的是之前写实时任务的时候都是用的java代码,新环境却更加偏向与使用flink sql 解决,所以记录下使用…

redis持久化操作【随记】

持久化 Redis它是将数据保存到内存当中,内存里的数据最大特点: 断电易失.保存在内存的数据就没有了.如果如果这些数据还有用,业务使用啥的,不能就让它这么没有了. redis当中提供持久化机制, 说白了,将内存的数据 —-> 写入到磁盘. –> 持久化. 1 rdb方式 redis database,…

1.4 Kettle 数据同步工具详细教程

工具介绍 一、概述 Kettle,又名 Pentaho Data Integration(PDI),是一个开源的数据集成工具,最初由 Pentaho 公司开发。它能够从多种数据源提取、转换并加载(ETL)数据,适用于数据仓…

STM32CubeMX 创建 MDK 工程

STM32CubeMX 创建 MDK 工程 MDK (Keil uVision) MDK (Keil uVision) 是 Arm 公司开发的一款集成开发环境 (IDE),专门用于 Arm 架构的嵌入式系统开发。它提供了全面的功能,包括: 代码编辑器,支持语法高亮、代码补全和错误检测调试…

【YOLO 系列】基于YOLO V8的车载摄像头交通信号灯检测识别系统【python源码+Pyqt5界面+数据集+训练代码】

前言 随着智能交通系统的发展,交通信号灯的准确识别对于提高道路安全和交通效率具有至关重要的作用。传统的交通信号灯识别方法依赖于固定的传感器和摄像头,存在安装成本高、维护困难等问题。为了解决这些问题,我们启动了这个项目&#xff0…

微软搁置水下数据中心项目——项目纳蒂克相比陆地服务器故障更少

“我的团队努力了,并且成功了,”COI负责人诺埃尔沃尔什说。 微软已悄然终止了始于2013年的水下数据中心(UDC)项目“纳蒂克”。该公司向DatacenterDynamics确认了这一消息,微软云运营与创新部门负责人诺埃尔沃尔什表示…

八大排序之希尔排序

一、概念及其介绍 希尔排序(Shell Sort)是插入排序的一种,它是针对直接插入排序算法的改进。 希尔排序又称缩小增量排序,因 DL.Shell 于 1959 年提出而得名。 它通过比较相距一定间隔的元素来进行,各趟比较所用的距离随着算法的进行而减小…

2024最新最全的车载测试教程__各模块测试用例

二、设计用例方法 1.测试用例设计前: a.仔细认真研读prd、理解prd b.质疑prd、有困惑或者想法的点做好记录,可以一次性和产品沟通 2.设计中: 成282 a.根据结构化思维,设计xmind i全链路正向功能点、子链路功能点 ⅱ.考虑业…

注意 llamaIndex 中 Chroma 的坑!

llamaIndex 做索引是默认存在内存中,由于索引需要通过网络调用 API,而且索引是比较耗时的操作,为了避免每次都进行索引,使用向量数据库进行 Embedding 存储以提高效率。首先将 Document 解析成 Node,索引时调用 Embedd…

指令调度基本概念

概述 为了提高处理器执行指令的并行度,处理器将计算机指令处理过程拆分为多个阶段,并通过多个硬件处理单元,将不同指令处理的前后阶段重叠并行执行,形成流水线(pipeline) 处理器的流水线结构是处理器微架构最基本的要素&#xf…

714. 买卖股票的最佳时机含手续费

714. 买卖股票的最佳时机含手续费 原题链接:完成情况:解题思路:ExplanationSummary 参考代码:_714买卖股票的最佳时机含手续费 错误经验吸取 原题链接: 714. 买卖股票的最佳时机含手续费 https://leetcode.cn/probl…

“论微服务架构及其应用”写作框架,软考高级,系统架构设计师

论文真题 论微服务架构及其应用近年来,随着互联网行业的迅猛发展,公司或组织业务的不断扩张,需求的快速变化以及用户量的不断增加,传统的单块(Monolithic)软件架构面临着越来越多的挑战,已逐渐…

机器人阻抗控制相关文献学习(阻抗实现)

机器人阻抗是一个描述机器人与环境交互时动态特性的概念。 定义: 阻抗在机器人领域中,通常用来描述机器人与其环境之间的相互作用。当机器人与环境接触时,环境对机器人施加一个作用力,而机器人也会对环境施加一个反作用力。这个反…

动手学深度学习(Pytorch版)代码实践 -计算机视觉-36图像增广

6 图片增广 import matplotlib.pyplot as plt import numpy as np import torch import torchvision from d2l import torch as d2l from torch import nn from PIL import Image import liliPytorch as lp from torch.utils.data import Dataset, DataLoaderplt.figure(cat)…

【记录】使用远程SSH配置d2l环境(含装pytorch,同时适用于本地anaconda)

文章目录 前言一、从创建新环境开始二、使用步骤1.安装pytorch2.安装 d2l 包3.安装其他包4.使用jupyter notebook 前言 记录一下如何利用使用命令行进行anaconda配置 d2l环境、pytorch并进行训练深度学习模型。 一、从创建新环境开始 如果是本地直接装一个 anaconda 软件就行…