PINN解偏微分方程实例4
- 一、正问题
- 1. Diffusion equation
- 2. Burgers’ equation
- 3. Allen–Cahn equation
- 4. Wave equation
- 二、反问题
- 1. Burgers’ equation
- 3. 部分代码示例
本文使用 PINN解偏微分方程实例1中展示的代码求解了以四个具体的偏微分方程,包括Diffusion,Burgers, Allen–Cahn和Wave方程,另外重新写了一个求解反问题的代码,以burger方程为例。
一、正问题
1. Diffusion equation
一维扩散方程:
∂
u
∂
t
=
∂
2
u
∂
x
2
+
e
−
t
(
−
sin
(
π
x
)
+
π
2
sin
(
π
x
)
)
,
x
∈
[
−
1
,
1
]
,
t
∈
[
0
,
1
]
u
(
x
,
0
)
=
sin
(
π
x
)
u
(
−
1
,
t
)
=
u
(
1
,
t
)
=
0
\begin{array}{l} \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+e^{-t}\left(-\sin (\pi x)+\pi^{2} \sin (\pi x)\right), \quad x \in[-1,1], t \in[0,1] \\ u(x, 0)=\sin (\pi x) \\ u(-1, t)=u(1, t)=0 \end{array}
∂t∂u=∂x2∂2u+e−t(−sin(πx)+π2sin(πx)),x∈[−1,1],t∈[0,1]u(x,0)=sin(πx)u(−1,t)=u(1,t)=0
其中
u
u
u 是扩散物质的浓度。精确解是
u
(
x
,
t
)
=
s
i
n
(
π
x
)
e
−
t
u(x,t)=sin(\pi x)e^{-t}
u(x,t)=sin(πx)e−t 表示。
2. Burgers’ equation
Burgers方程的定义为:
∂
u
∂
t
+
u
∂
u
∂
x
=
v
∂
2
u
∂
x
2
,
x
∈
[
−
1
,
1
]
,
t
∈
[
0
,
1
]
,
u
(
x
,
0
)
=
−
sin
(
π
x
)
,
u
(
−
1
,
t
)
=
u
(
1
,
t
)
=
0
,
\begin{array}{l} \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=v \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=-\sin (\pi x), \\ u(-1, t)=u(1, t)=0, \end{array}
∂t∂u+u∂x∂u=v∂x2∂2u,x∈[−1,1],t∈[0,1],u(x,0)=−sin(πx),u(−1,t)=u(1,t)=0,
其中,
u
u
u 为流速,
ν
ν
ν 为流体的粘度。在本文中,
ν
ν
ν 设为
0.01
/
π
0.01/\pi
0.01/π。
3. Allen–Cahn equation
Allen–Cahn方程的形式如下:
∂
u
∂
t
=
D
∂
2
u
∂
x
2
+
5
(
u
−
u
3
)
,
x
∈
[
−
1
,
1
]
,
t
∈
[
0
,
1
]
,
u
(
x
,
0
)
=
x
2
cos
(
π
x
)
,
u
(
−
1
,
t
)
=
u
(
1
,
t
)
=
−
1
,
\begin{array}{l} \frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}+5\left(u-u^{3}\right), \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=x^{2} \cos (\pi x), \\ u(-1, t)=u(1, t)=-1, \end{array}
∂t∂u=D∂x2∂2u+5(u−u3),x∈[−1,1],t∈[0,1],u(x,0)=x2cos(πx),u(−1,t)=u(1,t)=−1,
其中,扩散系数
D
=
0.001
D=0.001
D=0.001 .
4. Wave equation
一维波动方程如下:
∂
2
u
∂
t
2
−
4
∂
2
u
∂
x
2
=
0
,
x
∈
[
0
,
1
]
,
t
∈
[
0
,
1
]
,
u
(
0
,
t
)
=
u
(
1
,
t
)
=
0
,
t
∈
[
0
,
1
]
,
u
(
x
,
0
)
=
sin
(
π
x
)
+
1
2
sin
(
4
π
x
)
,
x
∈
[
0
,
1
]
,
∂
u
∂
t
(
x
,
0
)
=
0
,
x
∈
[
0
,
1
]
,
\begin{array}{l} \frac{\partial^{2} u}{\partial t^{2}}-4 \frac{\partial^{2} u}{\partial x^{2}}=0, \quad x \in[0,1], t \in[0,1], \\ u(0, t)=u(1, t)=0, \quad t \in[0,1], \\ u(x, 0)=\sin (\pi x)+\frac{1}{2} \sin (4 \pi x), \quad x \in[0,1], \\ \frac{\partial u}{\partial t}(x, 0)=0, \quad x \in[0,1], \end{array}
∂t2∂2u−4∂x2∂2u=0,x∈[0,1],t∈[0,1],u(0,t)=u(1,t)=0,t∈[0,1],u(x,0)=sin(πx)+21sin(4πx),x∈[0,1],∂t∂u(x,0)=0,x∈[0,1],
精确解为:
u
(
x
,
t
)
=
sin
(
π
x
)
cos
(
2
π
t
)
+
1
2
sin
(
4
π
x
)
cos
(
8
π
t
)
.
u(x, t)=\sin (\pi x) \cos (2 \pi t)+\frac{1}{2} \sin (4 \pi x) \cos (8 \pi t) .
u(x,t)=sin(πx)cos(2πt)+21sin(4πx)cos(8πt).
二、反问题
1. Burgers’ equation
Burgers方程的定义为:
∂
u
∂
t
+
u
∂
u
∂
x
=
v
∂
2
u
∂
x
2
,
x
∈
[
−
1
,
1
]
,
t
∈
[
0
,
1
]
,
u
(
x
,
0
)
=
−
sin
(
π
x
)
,
u
(
−
1
,
t
)
=
u
(
1
,
t
)
=
0
,
\begin{array}{l} \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=v \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=-\sin (\pi x), \\ u(-1, t)=u(1, t)=0, \end{array}
∂t∂u+u∂x∂u=v∂x2∂2u,x∈[−1,1],t∈[0,1],u(x,0)=−sin(πx),u(−1,t)=u(1,t)=0,
其中,
u
u
u 为流速,
ν
ν
ν 为流体的粘度。
这里假设
v
v
v 未知,我们同时求解方程的解和v的值。
3. 部分代码示例
import torch
import numpy as np
import matplotlib.pyplot as plt
sin = torch.sin
cos = torch.cos
exp = torch.exp
pi = torch.pi
epochs = 50000 # 训练代数,要为1000的整数倍
h = 100 # 画图网格密度
N = 30 # 内点配置点数
N1 = 10 # 边界点配置点数
N2 = 5000 # 数据点
# error
L2_error = []
L2_error_data = []
L2_error_eq = []
# Training
u = MLP()
opt = torch.optim.Adam(params=u.parameters())
xt, u_real = test_data(x_inf=-1, x_sup=1, t_inf=0, t_sup=1, h=h)
print("**************** equation+data ********************")
for i in range(epochs):
opt.zero_grad()
l = l_interior(u) \
+ l_down(u) \
+ l_left(u) \
+ l_right(u) \
+ l_data(u)
l.backward()
opt.step()
if (i+1) % 1000 == 0 or i == 0:
u_pred = u(xt)
error = l2_relative_error(u_real, u_pred.detach().numpy())
L2_error.append(error)
print("L2相对误差: ", error)
u1 = MLP()
opt = torch.optim.Adam(params=u1.parameters())
print("**************** data ********************")
for i in range(epochs):
opt.zero_grad()
l = l_data(u1)
l.backward()
opt.step()
if (i+1) % 1000 == 0 or i == 0:
u_pred = u1(xt)
error = l2_relative_error(u_real, u_pred.detach().numpy())
L2_error_data.append(error)
print("L2相对误差: ", error)
u2 = MLP()
opt = torch.optim.Adam(params=u2.parameters())
print("**************** equation ********************")
for i in range(epochs):
opt.zero_grad()
l = l_interior(u2) \
+ l_down(u2) \
+ l_left(u2) \
+ l_right(u2)
l.backward()
opt.step()
if (i+1) % 1000 == 0 or i == 0:
u_pred = u2(xt)
error = l2_relative_error(u_real, u_pred.detach().numpy())
L2_error_eq.append(error)
print("L2相对误差: ", error)
print("********************************")
print("PINN相对误差为: ", L2_error[-1])
print("equation相对误差为: ", L2_error_eq[-1])
print("data相对误差为: ", L2_error_data[-1])
print("********************************")
x = range(int(epochs / 1000 + 1))
plt.plot(x, L2_error, c='red', label='pinn')
plt.plot(x, L2_error_data, c='blue', label='only data')
plt.plot(x, L2_error_eq, c='yellow', label='only equation')
plt.scatter(x, L2_error, c='red')
plt.scatter(x, L2_error_data, c='blue')
plt.scatter(x, L2_error_eq, c='yellow')
plt.yscale('log')
plt.legend()
plt.show()
完整代码目录如下: