PINN解偏微分方程实例4

PINN解偏微分方程实例4

  • 一、正问题
    • 1. Diffusion equation
    • 2. Burgers’ equation
    • 3. Allen–Cahn equation
    • 4. Wave equation
  • 二、反问题
    • 1. Burgers’ equation
    • 3. 部分代码示例

  本文使用 PINN解偏微分方程实例1中展示的代码求解了以四个具体的偏微分方程,包括Diffusion,Burgers, Allen–Cahn和Wave方程,另外重新写了一个求解反问题的代码,以burger方程为例。

一、正问题

1. Diffusion equation

一维扩散方程:
∂ u ∂ t = ∂ 2 u ∂ x 2 + e − t ( − sin ⁡ ( π x ) + π 2 sin ⁡ ( π x ) ) , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] u ( x , 0 ) = sin ⁡ ( π x ) u ( − 1 , t ) = u ( 1 , t ) = 0 \begin{array}{l} \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+e^{-t}\left(-\sin (\pi x)+\pi^{2} \sin (\pi x)\right), \quad x \in[-1,1], t \in[0,1] \\ u(x, 0)=\sin (\pi x) \\ u(-1, t)=u(1, t)=0 \end{array} tu=x22u+et(sin(πx)+π2sin(πx)),x[1,1],t[0,1]u(x,0)=sin(πx)u(1,t)=u(1,t)=0
其中 u u u 是扩散物质的浓度。精确解是 u ( x , t ) = s i n ( π x ) e − t u(x,t)=sin(\pi x)e^{-t} u(x,t)=sin(πx)et 表示。

请添加图片描述

2. Burgers’ equation

Burgers方程的定义为:
∂ u ∂ t + u ∂ u ∂ x = v ∂ 2 u ∂ x 2 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = − sin ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = 0 , \begin{array}{l} \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=v \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=-\sin (\pi x), \\ u(-1, t)=u(1, t)=0, \end{array} tu+uxu=vx22u,x[1,1],t[0,1],u(x,0)=sin(πx),u(1,t)=u(1,t)=0,
其中, u u u 为流速, ν ν ν 为流体的粘度。在本文中, ν ν ν 设为 0.01 / π 0.01/\pi 0.01/π
请添加图片描述

3. Allen–Cahn equation

Allen–Cahn方程的形式如下:
∂ u ∂ t = D ∂ 2 u ∂ x 2 + 5 ( u − u 3 ) , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = x 2 cos ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = − 1 , \begin{array}{l} \frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}+5\left(u-u^{3}\right), \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=x^{2} \cos (\pi x), \\ u(-1, t)=u(1, t)=-1, \end{array} tu=Dx22u+5(uu3),x[1,1],t[0,1],u(x,0)=x2cos(πx),u(1,t)=u(1,t)=1,
其中,扩散系数 D = 0.001 D=0.001 D=0.001 .

请添加图片描述

4. Wave equation

一维波动方程如下:
∂ 2 u ∂ t 2 − 4 ∂ 2 u ∂ x 2 = 0 , x ∈ [ 0 , 1 ] , t ∈ [ 0 , 1 ] , u ( 0 , t ) = u ( 1 , t ) = 0 , t ∈ [ 0 , 1 ] , u ( x , 0 ) = sin ⁡ ( π x ) + 1 2 sin ⁡ ( 4 π x ) , x ∈ [ 0 , 1 ] , ∂ u ∂ t ( x , 0 ) = 0 , x ∈ [ 0 , 1 ] , \begin{array}{l} \frac{\partial^{2} u}{\partial t^{2}}-4 \frac{\partial^{2} u}{\partial x^{2}}=0, \quad x \in[0,1], t \in[0,1], \\ u(0, t)=u(1, t)=0, \quad t \in[0,1], \\ u(x, 0)=\sin (\pi x)+\frac{1}{2} \sin (4 \pi x), \quad x \in[0,1], \\ \frac{\partial u}{\partial t}(x, 0)=0, \quad x \in[0,1], \end{array} t22u4x22u=0,x[0,1],t[0,1],u(0,t)=u(1,t)=0,t[0,1],u(x,0)=sin(πx)+21sin(4πx),x[0,1],tu(x,0)=0,x[0,1],
精确解为:
u ( x , t ) = sin ⁡ ( π x ) cos ⁡ ( 2 π t ) + 1 2 sin ⁡ ( 4 π x ) cos ⁡ ( 8 π t ) . u(x, t)=\sin (\pi x) \cos (2 \pi t)+\frac{1}{2} \sin (4 \pi x) \cos (8 \pi t) . u(x,t)=sin(πx)cos(2πt)+21sin(4πx)cos(8πt).

二、反问题

1. Burgers’ equation

Burgers方程的定义为:
∂ u ∂ t + u ∂ u ∂ x = v ∂ 2 u ∂ x 2 , x ∈ [ − 1 , 1 ] , t ∈ [ 0 , 1 ] , u ( x , 0 ) = − sin ⁡ ( π x ) , u ( − 1 , t ) = u ( 1 , t ) = 0 , \begin{array}{l} \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=v \frac{\partial^{2} u}{\partial x^{2}}, \quad x \in[-1,1], t \in[0,1], \\ u(x, 0)=-\sin (\pi x), \\ u(-1, t)=u(1, t)=0, \end{array} tu+uxu=vx22u,x[1,1],t[0,1],u(x,0)=sin(πx),u(1,t)=u(1,t)=0,
其中, u u u 为流速, ν ν ν 为流体的粘度。
  这里假设 v v v 未知,我们同时求解方程的解和v的值。

在这里插入图片描述

3. 部分代码示例

import torch
import numpy as np
import matplotlib.pyplot as plt

sin = torch.sin
cos = torch.cos
exp = torch.exp
pi = torch.pi

epochs = 50000    # 训练代数,要为1000的整数倍
h = 100    # 画图网格密度
N = 30    # 内点配置点数
N1 = 10    # 边界点配置点数
N2 = 5000    # 数据点

# error
L2_error = []
L2_error_data = []
L2_error_eq = []
# Training
u = MLP()
opt = torch.optim.Adam(params=u.parameters())
xt, u_real = test_data(x_inf=-1, x_sup=1, t_inf=0, t_sup=1, h=h)
print("**************** equation+data ********************")
for i in range(epochs):
    opt.zero_grad()
    l = l_interior(u) \
        + l_down(u) \
        + l_left(u) \
        + l_right(u) \
        + l_data(u)
    l.backward()
    opt.step()
    if (i+1) % 1000 == 0 or i == 0:
        u_pred = u(xt)
        error = l2_relative_error(u_real, u_pred.detach().numpy())
        L2_error.append(error)
        print("L2相对误差: ", error)


u1 = MLP()
opt = torch.optim.Adam(params=u1.parameters())
print("**************** data ********************")
for i in range(epochs):
    opt.zero_grad()
    l = l_data(u1)
    l.backward()
    opt.step()
    if (i+1) % 1000 == 0 or i == 0:
        u_pred = u1(xt)
        error = l2_relative_error(u_real, u_pred.detach().numpy())
        L2_error_data.append(error)
        print("L2相对误差: ", error)


u2 = MLP()
opt = torch.optim.Adam(params=u2.parameters())
print("**************** equation ********************")
for i in range(epochs):
    opt.zero_grad()
    l = l_interior(u2) \
        + l_down(u2) \
        + l_left(u2) \
        + l_right(u2)
    l.backward()
    opt.step()
    if (i+1) % 1000 == 0 or i == 0:
        u_pred = u2(xt)
        error = l2_relative_error(u_real, u_pred.detach().numpy())
        L2_error_eq.append(error)
        print("L2相对误差: ", error)


print("********************************")
print("PINN相对误差为: ", L2_error[-1])
print("equation相对误差为: ", L2_error_eq[-1])
print("data相对误差为: ", L2_error_data[-1])
print("********************************")

x = range(int(epochs / 1000 + 1))
plt.plot(x, L2_error, c='red', label='pinn')
plt.plot(x, L2_error_data, c='blue', label='only data')
plt.plot(x, L2_error_eq, c='yellow', label='only equation')
plt.scatter(x, L2_error, c='red')
plt.scatter(x, L2_error_data, c='blue')
plt.scatter(x, L2_error_eq, c='yellow')
plt.yscale('log')
plt.legend()
plt.show()

完整代码目录如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/736786.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

长亭谛听教程部署和详细教程

PPT 图片先挂着 挺概念的 谛听的能力 hw的时候可能会问你用过的安全产品能力能加分挺重要 溯源反制 反制很重要感觉很厉害 取证分析 诱捕牵制 其实就是蜜罐 有模板直接爬取某些网页模板进行伪装 部署要求 挺低的 对linux内核版本有要求 需要root 还有系统配置也要修改 …

论文阅读--Efficient Hybrid Zoom using Camera Fusion on Mobile Phones

这是谷歌影像团队 2023 年发表在 Siggraph Asia 上的一篇文章,主要介绍的是利用多摄融合的思路进行变焦。 单反相机因为卓越的硬件性能,可以非常方便的实现光学变焦。不过目前的智能手机,受制于物理空间的限制,还不能做到像单反一…

long long ago

一、long 众所周知,英文单词 long,表示长,长的。 但是,还有很多你不知道到的东西,根据英文单词首字母象形原则,我们可以做一下单词long结构分析: long l长 ong长 什么意思?就是说首字线 l…

Maven的依赖传递、依赖管理、依赖作用域

在Maven项目中通常会引入大量依赖,但依赖管理不当,会造成版本混乱冲突或者目标包臃肿。因此,我们以SpringBoot为例,从三方面探索依赖的使用规则。 1、 依赖传递 依赖是会传递的,依赖的依赖也会连带引入。例如在项目中…

AI大模型企业应用实战(14)-langchain的Embedding

1 安装依赖 ! pip install --upgrade langchain ! pip install --upgrade openai0.27.8 ! pip install -U langchain-openai ! pip show openai ! pip show langchain ! pip show langchain-openai 2 Embed_documents # 1. 导入所需的库 from langchain_openai import Open…

poi生成的excel,输入数字后变成1.11111111111111E+23

poi版本4.1.2 生成excel后,单元格输入数字,过长的话变成这样 解决:生成的时候设置单元格格式为文本格式 import org.apache.poi.ss.usermodel.*; import org.apache.poi.xssf.usermodel.XSSFWorkbook;import java.io.FileOutputStream; imp…

解析PDF文件中的图片为文本

解析PDF文件中的图片为文本 1 介绍 解析PDF文件中的图片,由两种思路,一种是自己读取PDF文件中的图片,然后用OCR解析,例如:使用PyMuPDF读取pdf文件,再用PaddleOCR或者Tesseract-OCR识别文字。另一种使用第…

使用matlab的大坑,复数向量转置!!!!!变量区“转置变量“功能(共轭转置)、矩阵转置(默认也是共轭转置)、点转置

近期用verilog去做FFT相关的项目,需要用到matlab进行仿真然后和verilog出来的结果来做对比,然后计算误差。近期使用matlab犯了一个错误,极大的拖慢了项目进展,给我人都整emo了,因为怎么做仿真结果都不对,还…

clean code-代码整洁之道 阅读笔记(第十一章)

第十一章 系统 “复杂要人命,它消磨开发者的生命,让产品难以规划、构建和测试。” --RayOzzie,微软公司首席技术官 11.1 如何建造一个城市 每个城市都有一组组人管理不同的部分,有些人负责全局,其他人负责细节。 城市能运转&#…

【git】gitee仓库本地克隆失败可能的一种解决办法

出错点: 在 gitee 克隆远程仓库到 本地时,可能会出现以下报错情况,无法成功克隆 正常流程:(熟悉正常克隆流程的可以直接跳到下面的【解决办法】) 我们一般复制仓库地址是在下面红线框框的位置&#xff0c…

虚拟现实环境下的远程教育和智能评估系统(十二)

接下来,把实时注视点位置、语音文本知识点、帧知识点区域进行匹配; 首先,第一步是匹配语音文本知识点和帧知识点区域,我们知道教师所说的每句话对应的知识点,然后寻找当前时间段内,知识点对应的ppt中的区域…

线程C++

#include <thread> #include <chrono> #include <cmath> #include <mutex> #include <iostream> using namespace std;mutex mtx; void threadCommunicat() {int ans 0;while (ans<3){mtx.lock();//上锁cout << "ans" <…

C++初学者指南第一步---14.函数调用机制

C初学者指南第一步—14.函数调用机制 文章目录 C初学者指南第一步---14.函数调用机制1.记住&#xff1a;内存的结构2.函数调用是如何工作的3. 不要引用局部变量4. 常见编译器优化5. Inlining内联 1.记住&#xff1a;内存的结构 堆&#xff08;自由存储&#xff09; 用于动态存…

Cesium如何高性能的实现上万条道路的流光穿梭效果

大家好&#xff0c;我是日拱一卒的攻城师不浪&#xff0c;专注可视化、数字孪生、前端、nodejs、AI学习、GIS等学习沉淀&#xff0c;这是2024年输出的第20/100篇文章&#xff1b; 前言 在智慧城市的项目中&#xff0c;经常会碰到这样一个需求&#xff1a;领导要求将全市的道路…

PADS学习笔记

1.PADS设计PCB流程 封装库&#xff08;layout&#xff09;&#xff0c;原理图库&#xff08;logic&#xff09;的准备原件封装的匹配&#xff08;logic&#xff09;原理图的绘制&#xff08;logic&#xff09;导网表操作&#xff08;logic&#xff09;导入结构&#xff08;lay…

SpringBoot + 虚拟线程,鸟枪换大炮!

“虚拟”线程&#xff0c;望文生义&#xff0c;它是“假”的&#xff0c;它不直接调度操作系统的线程&#xff0c;而是由JVM再提供一层线程的接口抽象&#xff0c;由普通线程调度&#xff0c;即一个普通的操作系统线程可以调度成千上万个虚拟线程。 虚拟线程比普通线程的消耗要…

Centos7安装自动化运维Ansible

自动化运维Devops-Ansible Ansible是新出现的自动化运维工具&#xff0c;基于Python 开发&#xff0c;集合了众多运维工具&#xff08;puppet 、cfengine、chef、func、fabric&#xff09;的优点&#xff0c;实现了批量系统配置 、批量程序部署、批量运行命令 等功能。Ansible…

Java8 --- Gradle7.4整合IDEA

目录 一、Gradle整合IDEA 1.1、Groovy安装 1.1.1、配置环境变量 ​编辑 1.2、创建项目 ​编辑 1.3、Groovy基本语法 1.3.1、基本语法 1.3.2、引号 1.3.3、语句结构 1.3.4、数据类型 1.3.5、集合操作 1.4、使用Gradle创建普通Java工程 1.5、使用Gradle创建Java ss…

JavaScript之类(1)

class基础语法结构&#xff1a; 代码&#xff1a; class MyClass {constructor() { ... }method1() { ... }method2() { ... }method3() { ... }... } 解释&#xff1a; 属性解释class是我们定义的类型(类)MyClass是我们定义的类的名称 constructor()我们可以在其中初始化对象m…

基于YOLOv5的PCB板缺陷检测系统的设计与实现(PyQT页面+YOLOv5模型+数据集)

简介 随着电子设备的广泛应用,PCB(印刷电路板)作为其核心部件,其质量和可靠性至关重要。然而,PCB生产过程中常常会出现各种缺陷,如鼠咬伤、开路、短路、杂散、伪铜等。这些缺陷可能导致设备故障,甚至引发严重的安全问题。为了提高PCB检测的效率和准确性,我们基于YOLOv…