回归预测 | MATLAB实现基于SAE堆叠自编辑器多输入单输出回归预测

回归预测 | MATLAB实现基于SAE堆叠自编辑器多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现基于SAE堆叠自编辑器多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

基本介绍

1.MATLAB实现基于SAE堆叠自编辑器多输入单输出回归预测;
2.运行环境为Matlab2020b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前7列输入,最后1列输出,所有文件放在一个文件夹;
5.命令窗口输出R2、MAE、MAPE、RMSE多指标评价;

模型描述

基于SAE(Stacked Autoencoder)的堆叠自编码器是一种无监督学习算法,用于学习输入数据的特征表示。它可以用于多输入单输出的回归预测任务。下面是一个基于SAE堆叠自编码器的多输入单输出回归预测的一般步骤:准备输入数据和对应的输出标签。输入数据可以有多个特征,每个特征可以是数值型、分类型或者其他类型的数据。输出标签是回归预测的目标值。对输入数据进行标准化处理,使得不同特征具有相同的尺度。这可以提高模型的训练效果。使用堆叠自编码器的层次结构逐层进行训练。每一层的自编码器都是一个无监督学习模型,它通过最小化重构误差来学习输入数据的表示。每个自编码器的隐藏层输出可以作为下一层自编码器的输入。
训练完整的堆叠自编码器后,可以使用它来提取输入数据的特征表示。将输入数据通过每一层的自编码器,得到每一层的隐藏层输出作为新的特征表示。使用提取的特征表示和对应的输出标签进行回归模型的训练。可以选择常见的回归模型,如线性回归、支持向量回归(SVR)或者深度神经网络等。使用评估指标(如均方误差、平均绝对误差等)对训练好的回归模型进行评估。可以使用交叉验证等技术来评估模型的泛化性能。使用训练好的回归模型对新的输入数据进行预测。将输入数据通过特征提取步骤得到特征表示,然后使用回归模型进行预测。SAE的堆叠自编码器可以根据具体的任务和数据进行调整和优化。

程序设计

  • 完整源码和数据获取方式:私信回复基于SAE堆叠自编辑器多输入单输出回归预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/73585.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式:ARM Day1

1. 思维导图 2.作业一 3.作业2

MySQL入门学习教程(二)

上一篇文章讲的是mysql的基本操作,这一篇会有一点难以理解,本节主要内容mysql视图,存储过程,函数,事务,触发器,以及动态执行sql 视图view 视图是一个虚拟表,其内容由查询定义。同真…

day24-106.从中序与后序遍历序列构造二叉树

106.从中序与后序遍历序列构造二叉树 力扣题目链接(opens new window) 根据一棵树的中序遍历与后序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 中序遍历 inorder [9,3,15,20,7]后序遍历 postorder [9,15,7,20,3] 返回如下的二叉树&am…

一百五十二、Kettle——Kettle9.3.0本地连接Hive3.1.2(踩坑,亲测有效)

一、目的 由于先前使用的kettle8.2版本在Linux上安装后&#xff0c;创建共享资源库点击connect时页面为空&#xff0c;后来采用如下方法&#xff0c;在/opt/install/data-integration/ui/menubar.xul文件里添加如下代码 <menuitem id"file-openZiyuanku" label&…

【软件工程】软件测试

软件测试的对象 软件程序文档 测试对象&#xff1a;各个阶段产生的源程序和文档。 软件测试的目的 基于不同的立场&#xff0c;对软件测试的目的存在着两种完全对立的观点。 &#xff08;1&#xff09;一种观点是通过测试暴露出软件中所包含的故障和缺陷(从用户的角度)&#xf…

汇编指令练习

1.大小比较&#xff08;循环&#xff09; start: /*mov r0,#0x9mov r1,#0xfb LoopLoop:cmp r0,r1beq stopsubhi r0,r0,r1subcc r1,r1,r0b Loop stop:b stop.end 仿真图 2. 1到100之和 start:mov r0,#0x1mov r1,#0x0b sum sum:add r1,r1,r0add r0,r0,#0x1cmp r0,#0x65beq sto…

SRE之前端服务器的负载均衡

写在前面 今天和小伙伴们分享一些前端服务器的负载均衡技术内容为结合《 SRE Google运维解密》 整理&#xff1a; 涉及DNS 负载均衡VIP 负载均衡反向代理负载均衡 理解不足小伙伴帮忙指正 傍晚时分&#xff0c;你坐在屋檐下&#xff0c;看着天慢慢地黑下去&#xff0c;心里寂寞…

ARM--day2(cpsr、spsr、数据搬移指令、移位操作指令、位运算操作指令、算数运算指令、比较指令、跳转指令)

.text .global _gcd _gcd:mov r0,#9mov r1,#15b loop loop:cmp r0,r1beq stopsubhi r0,r1bhi loopsubcc r1,r0bcc loopstop:b stop.end用for循环实现1~100之间和5050 .text .global _gcd _gcd:mov r0,#0x0mov r1,#0x1mov r2,#0x64b loop loop:cmp r1,r2bhi stopadd r0,r0,r1ad…

0101xss入门及pikachu靶场-xss-web安全-网络安全

文章目录 0 概述1 环境准备2 反射型xss2.1 概述2.1 靶场-反射型xss&#xff08;get&#xff09; 3 存储型xss3.1 概述3.2 靶场-存储型xss 4 DOM型xss4.1 概述4.2 靶场-DOM型xss 5 问题总结6.1 再次启动pikachu容器报错 结语 0 概述 学习路线&#xff0c;如如下图所示&#xff…

前后端分离------后端创建笔记(03)前后端对接(上)

本文章转载于【SpringBootVue】全网最简单但实用的前后端分离项目实战笔记 - 前端_大菜007的博客-CSDN博客 仅用于学习和讨论&#xff0c;如有侵权请联系 源码&#xff1a;https://gitee.com/green_vegetables/x-admin-project.git 素材&#xff1a;https://pan.baidu.com/s/…

[保研/考研机试] 杨辉三角形 西北工业大学复试上机题 C++实现

题目描述 Time Limit: 1000 ms Memory Limit: 256 mb 输入n值&#xff0c;使用递归函数&#xff0c;求杨辉三角形中各个位置上的值。 输入描述: 一个大于等于2的整型数n 输出描述: 题目可能有多组不同的测试数据&#xff0c;对于每组输入数据&#xff0c; 按题目的要求输…

Java代理模式——静态代理与动态代理

代理模式 代理模式允许你为其他对象提供一个代理&#xff0c;以控制对这个对象的访问。代理模式在不改变实际对象的情况下&#xff0c;可以在访问对象时添加额外的功能。 可以理解为代理模式为被代理对象创造了一个替身&#xff0c;调用者可以通过这个替身去实现这个被代理对…

定长内存池设计ConcurrentMemoryPool

原理 还回来的内存用链表串联起来&#xff0c;称为自由链表 内存块自身进行链接&#xff0c;前四个字节存下一个的地址 结构 template<class T> class ObjectPool { public:T* New(){} private:char* _memory nullptr; //方便切割void* _freeList nullptr; };第一步…

Axure RP移动端高保真CRM办公客户管理系统原型模板及元件库

Axure RP移动端高保真CRM办公客户管理系统原型模板及元件库&#xff0c;一套典型的移动端办公工具型APP Axure RP原型模板&#xff0c;可根据实际的产品需求进行扩展&#xff0c;也可以作为移动端原型设计的参考案例。为提升本作品参考价值&#xff0c;在模板设计过程中尽量追求…

uniapp 自定义手机顶部状态栏不生效问题

想要的效果想淘宝一样&#xff0c;底色覆盖到手机顶部&#xff0c;找了两天都没找到原因&#xff0c;过程很艰苦&#xff0c;直接上结果吧 项目是后来接手的&#xff0c;最终原因出在这&#xff0c; "immersed" : false>设置为 true 就可以了&#xff0c;沉浸式样…

RunnerGo的相比较JMeter优势,能不能替代?

目前在性能测试领域市场jmeter占有率是非常高的&#xff0c;主要原因是相对比其他性能测试工具使用更简单&#xff08;开源、易扩展&#xff09;&#xff0c;功能更强大&#xff08;满足多种协议的接口&#xff09;&#xff0c;但是随着研发协同的升级&#xff0c;平台化的性能…

Java智慧工地APP源码带AI识别

智慧工地为建筑全生命周期赋能&#xff0c;用创新的可视化与智能化方法&#xff0c;降低成本&#xff0c;创造价值。 一、智慧工地APP概述 智慧工地”立足于互联网&#xff0c;采用云计算&#xff0c;大数据和物联网等技术手段&#xff0c;针对当前建筑行业的特点&#xff0c;…

【Sklearn】基于朴素贝叶斯算法的数据分类预测(Excel可直接替换数据)

【Sklearn】基于朴素贝叶斯算法的数据分类预测&#xff08;Excel可直接替换数据&#xff09; 1.模型原理2.模型参数3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果 1.模型原理 模型原理&#xff1a; 朴素贝叶斯分类是基于贝叶斯定理的一种分类方法。它假设特征之间相互…

海康威视摄像头二次开发_云台控制_视频画面实时预览(基于Qt实现)

一、项目背景 需求:需要在公司的产品里集成海康威视摄像头的SDK,用于控制海康威视的摄像头。 拍照抓图、视频录制、云台控制、视频实时预览等等功能。 开发环境: windows-X64(系统) + Qt5.12.6(Qt版本) + MSVC2017_X64(使用的编译器) 海康威视提供了设备网络SDK,设备网…

爬虫练手项目——获取龙族小说全文

网站信息 目标网站信息如下&#xff1a;包含了龙族1-5全部内容 代码 import requests from bs4 import BeautifulSoup import os import timeheaders {User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Sa…