一些3D数据集的简单介绍

一、Objaverse 1.0

Objaverse 1.0: a large dataset of objects with 800K+ (and growing) 3D models with descriptive captions, tags and animations. Assets not only belong to varied categories like animals, humans, and vehicles, but also include interiors and exteriors of large spaces that can be used, e.g., to train embodied agents(具身智能是Embodied Intelligence,这个应该可以理解为机器人)

Objaverse 1.0 includes 818K 3D objects. There are >2.35M tags on the objects, with >170K of them being unique. We estimate that the objects have coverage for nearly 21K WordNet entities. Objects were uploaded between 2012 and 2022, with over 200K objects uploaded just in 2021. 下图是Objaverse数据集的一些数据展示,包括物体所属的Sketchfab categories、tags的词云、tags的频率图、Objaverse-LVIS categories中的object数量

请添加图片描述

Objaverse contains 3D models for many diverse categories including tail categories which are not represented in other datasets. It also contains diverse and realistic object instances per category. Qualitatively, the 3D-meshes generated by the Objaverse-trained models are high-quality and diverse, especially when compared to the generations from the ShapeNet-trained model.

在这里插入图片描述

上图是Objaverse的作者,分别基于Objaverse的Bag分类和ShapeNet的bag分类,训练了一个模型,生成的3D物体效果。结果就是前者质量更高一点,然后说是91%的情况下Objaverse训练的模型生成的物体在外观上更具多样化

The objects are sourced from Sketchfab, an online 3D marketplace where users can upload and share models for both free and commercial use. Objects selected for Objaverse have a distributable Creative Commons license and were obtained using Sketchfab’s public API.

Objaverse objects inherit a set of foundational annotations supplied by their creator when uploaded to Sketchfab. 下图展示了每个model的可用metadata示例,metadata包括一个名字、一些固定属性、一些tags、和一个自然语言描述
在这里插入图片描述

在这里插入图片描述
上图是Objaverse和ShapeNet数据集关于车辆、床铺、花瓶和书包这四类的物体模型对比,可见ShapeNet的模型相比起来就非常简单,因为Objaverse的对象来自许多3D内容创建平台,而ShapeNet都来自SketchUp(一个为简单的建筑建模而构建的3D建模平台)。91%的情况下Objaverse训练的模型生成的物体在外观上更具多样化

Objaverse-XL: 2023.7.11

Objaverse-XL is 12x larger than Objaverse 1.0 and 100x larger than all other 3D datasets combined.
Objaverse-XL comprises of over 10 million 3D objects, representing an order of magnitude more data than the recently proposed Objaverse 1.0 and is two orders of magnitude larger than ShapeNet.

Objaverse-XL is comprised of 10.2M 3D assets.

Objaverse-XL is composed of 3D objects coming from several sources, including GitHub, Thingiverse, Sketchfab, Polycom, and the Smithsonian Institution. While the data sourced from Sketchfab for our project is specifically from Objaverse 1.0, a dataset of 800K objects consisting of Creative Commons-licensed 3D models. Each model is distributed as a standardized GLB file.

Objaverse-XL评Objaverse 1.0:Objaverse 1.0 introduced a 3D dataset of 800K 3D models with high quality and diverse textures, geometry and object types, making it 15× larger than prior 3D datasets. While impressive and a step toward a large-scale 3D dataset, Objaverse 1.0 remains several magnitudes smaller than dominant datasets in vision and language. As seen in Figure 2 and Table 1, Objaverse-XL extends Objaverse 1.0 to an even larger 3D dataset of 10.2M unique objects from a diverse set of sources, object shapes, and categories.

在这里插入图片描述

ShapeNet: 2015.12.9

Objaverse-XL评ShapeNet:ShapeNet has served as the tesetbed for modeling, representing and predicting 3D shapes in the era of deep learning. Notwithstanding its impact, ShapeNet objects are of low resolution and textures are often overly simplistic. Other datasets such as ABO, GSO, and OmniObjects3D improve on the texture quality of their CAD models but are significantly smaller in size.

Objaverse-XL评ShapeNet:3D datasets such as ShapeNet rely on professional 3D designers using expensive software to create assets, making the process tremendously difficult to crowdsource and scale.

ShapeNet has indexed more than 3,000,000 models, 220,000 models of these models are classified into 3,135 categories (WordNet sunsets).

In order for the dataset to be easily usable by researchers it should contain clean and high quality 3D models. We identify and group 3D models into the following categories: single 3D models, 3D scenes, billboards, and big ground plane. We currently include the single 3D models in the ShapeNetCore subset of ShapeNet.

ShapeNetCore is a subset of the full ShapeNet dataset with single clean 3D models and manually verified category and alignment annotations. It covers 55 common object categories with about 51,300 unique 3D models.

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/735359.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【课程总结】Day10:卷积网络的基本组件

前言 由于接下来的课程内容将围绕计算机视觉展开,其中接触最多的内容是卷积、卷积神经网络等…因此,本篇内容将从卷积入手,梳理理解:卷积的意义、卷积在图像处理中的作用以及卷积神经网络的概念,最后利用pytorch搭建一…

Vue76-路由对浏览器历史记录的影响

一、push模式 默认是push 二、replace模式 替换当前记录! (当前指针指向的那一条记录) 三、小结

只有一个鸿蒙好?还是鸿蒙、安卓、IOS并存好?

这个话题,现在很敏感,为了防止被喷,我提前且清楚的交待我的观点:我双手欢迎鸿蒙、欢迎仓颉,而且我已经用行动来支持,比如2021年刚发布ArkUI时,我就第一时间上手了,且这几年一直在跟进…

图解Transformer

图解Transformer Transformer模型是在论文《Attention is All You Need》中提出的。它的TensorFlow实现作为Tensor2Tensor包的一部分是可用的。哈佛大学的自然语言处理小组创建了一个指南,用PyTorch实现对论文进行了注释。在这篇文章中,我们将尝试简化一…

【IEEE独立出版、有确定的ISBN号】第三届能源与电力系统国际学术会议 (ICEEPS 2024)

第三届能源与电力系统国际学术会议 (ICEEPS 2024) 2024 3rd International Conference on Energy and Electrical Power Systems 连续2届会后4-5个月EI检索,检索稳定! 成功申请IEEE出版! 特邀院士、Fellow 报告! 一、大会信息 …

如何恢复丢失的文件?免费为 Mac 恢复数据

丢失 Mac 上的重要文件是一件非常痛苦的事情。无论是重要的工作文件、重要文件还是心爱的照片,意外删除它们或出现系统错误都会非常令人沮丧。别担心;有办法:奇客数据恢复Mac版。这款免费的 Mac 文件恢复软件就像您文件的救星 - 当出现问题时…

【密码学】分组密码

文章目录 分组密码的模式分组密码与流密码模式明文分组与密文分组 ECB模式ECB定义ECB特点对ECB模式的攻击改变分组顺序攻击 CBC模式CBC定义初始化向量IVCBC特点对CBC模式的攻击对初始向量进行反转攻击填充提示攻击 CFB模式CFB定义对CFB模式的攻击重放攻击 OFB模式OFB定义CFB模式…

深入学习-Gradle-自动化构建技术(二)Groovy-筑基

但是,如果你这个类或变量要用于其它模块的,建议不要使用 def,还是应该使用 Java 中的那种强类型定义方式,因为使用强类型的定义方式,它不能动态转换为其它类型,它能够保证外界传递进来的值一定是正确的。如…

程序猿大战Python——面向对象——私有权限

私有属性 目标:掌握私有属性的使用。 为了更好的限制属性的访问和包含隐私,可以给属性设置私有权限。 当把属性设置为私有属性后,则该属性只能被本类直接访问。 定义私有属性语法: self.__属性名 设置和获取私有属性值语法&am…

Interleaving Retrieval with Chain-of-Thought Reasoning for ... 论文阅读

Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions 论文阅读 文章目录 Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions 论文阅读 Abstract介绍相关工作开放域QA提…

【物联网】NB-IoT

目录 一、什么是NBIOT 二、NB-IoT的特点 三、NBIOT的工作状态 四、移远NB-IoT模块及AT指令 一、什么是NBIOT NB-IoT(Narrow Band Internet of Things)窄带物联网,构建于蜂窝网络,所占用的带宽很窄,只需约180KHz&am…

易基因:【表观遗传学基础】如何研究DNA甲基化

大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。 表观遗传学近几年取得的一系列研究进展,确实吸引着越来越多的关注!为了帮大伙儿梳理一下表观遗传学的基本概念和研究方法,小编打算开一个系列专题&…

工业数字孪生:智能制造的新引擎

数字孪生技术:智能制造的新引擎 一、数字孪生技术的基本概念与工业应用 1.1 数字孪生的定义与原理 数字孪生技术是一种先进的集成技术,它通过在数字空间创建一个精准物理对象的虚拟模型,使得我们可以在数字空间中模拟、分析和预测物理实体…

LeetCode35.搜索插入位置

LeetCode刷题记录 文章目录 📜题目描述💡解题思路⌨C代码 📜题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。 如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须…

概率论与数理统计(期末自用总结版)

本篇内容仅供学习参考,均为自用!!! 如有错误,欢迎指正!!!

模板初阶【C++】

文章目录 模板的作用模板的原理模板分为两大类——函数模板和类模板函数模板语法函数模板实例化模板函数的方式模板函数的类型转换既有函数模板又有已经实现的函数,会优先调用哪一个? 类模板语法模板类实例化对象模板类的模板参数可以有缺省值类模板中的…

Android实战之app版本更新升级全文章(二)

BaseAndroid.checkUpdate(MainActivity.this, 2, “http://f5.market.mi-img.com/download/AppStore/0f4a347f5ce5a7e01315dda1ec35944fa56431d44/luo.footprint.apk”, “更新了XXX\n修复OOO”, false); 看看效果图 界面有点丑,自己修改下吧 当然啦&#xff0c…

Oracle中递归查询(START WITH……CONNECT BY……)

一、基本语法 在Oracle中START WITH……CONNECT BY……一般用来查找存在父子关系的数据,也就是树形结构的数据。 SELECT * FROM TABLE WHERE 条件3 START WITH 条件1 CONNECT BY 条件2;start with [condition]:设置起点,用来限制第一层的数…

Springboot整合MinIO实现系统文件的便捷式管理实例

一、MinIO简介 1.基础描述 MinIO 是一个高性能的对象存储系统,用于存储大量非结构化数据。它以简洁、高效、可靠和高扩展性著称,能够胜任各种数据密集型任务。MinIO 采用了与 Amazon S3 兼容的 API,使得用户无需额外学习即可上手使用。下面…

Ubuntu iso 镜像下载 步骤截图说明

Ubuntu镜像下载,在这个网址: Enterprise Open Source and Linux | Ubuntu 步骤如下图所示: 1、登入网址 2、点击Get Ubuntu 3、点击Download Ubuntu Desktop 后续点击Downloadload 24.04 LTS直接下载就行 如果需要下载其它版本&#xf…