6.S081的Lab学习——Lab7: Multithreading

文章目录

  • 前言
  • 一、Uthread: switching between threads (moderate)
    • 提示:
    • 解析
  • 二、Using threads (moderate)
    • 解析:
  • 三、Barrier (moderate)
    • 解析:
  • 总结


前言

一个本硕双非的小菜鸡,备战24年秋招。打算尝试6.S081,将它的Lab逐一实现,并记录期间心酸历程。
代码下载

官方网站:6.S081官方网站

安装方式:
通过 APT 安装 (Debian/Ubuntu)
确保你的 debian 版本运行的是 “bullseye” 或 “sid”(在 ubuntu 上,这可以通过运行 cat /etc/debian_version 来检查),然后运行:

sudo apt-get install git build-essential gdb-multiarch qemu-system-misc gcc-riscv64-linux-gnu binutils-riscv64-linux-gnu 

(“buster”上的 QEMU 版本太旧了,所以你必须单独获取。

qemu-system-misc 修复
此时此刻,似乎软件包 qemu-system-misc 收到了一个更新,该更新破坏了它与我们内核的兼容性。如果运行 make qemu 并且脚本在 qemu-system-riscv64 -machine virt -bios none -kernel/kernel -m 128M -smp 3 -nographic -drive file=fs.img,if=none,format=raw,id=x0 -device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.0 之后出现挂起

则需要卸载该软件包并安装旧版本:

  $ sudo apt-get remove qemu-system-misc
  $ sudo apt-get install qemu-system-misc=1:4.2-3ubuntu6

在 Arch 上安装

sudo pacman -S riscv64-linux-gnu-binutils riscv64-linux-gnu-gcc riscv64-linux-gnu-gdb qemu-arch-extra

测试您的安装
若要测试安装,应能够检查以下内容:

$ riscv64-unknown-elf-gcc --version
riscv64-unknown-elf-gcc (GCC) 10.1.0
...

$ qemu-system-riscv64 --version
QEMU emulator version 5.1.0

您还应该能够编译并运行 xv6: 要退出 qemu,请键入:Ctrl-a x。

# in the xv6 directory
$ make qemu
# ... lots of output ...
init: starting sh
$

本实验将使您熟悉多线程。您将在用户级线程包中实现线程之间的切换,使用多个线程来加速程序,并实现一个屏障。

切换分支执行操作

git stash
git fetch
git checkout thread
make clean

一、Uthread: switching between threads (moderate)

在本练习中,您将为用户级线程系统设计上下文切换机制,然后实现它。为了让您开始,您的xv6有两个文件:user/uthread.c和user/uthread_switch.S,以及一个规则:运行在Makefile中以构建uthread程序。uthread.c包含大多数用户级线程包,以及三个简单测试线程的代码。线程包缺少一些用于创建线程和在线程之间切换的代码。

您的工作是提出一个创建线程和保存/恢复寄存器以在线程之间切换的计划,并实现该计划。完成后,make grade应该表明您的解决方案通过了uthread测试。

完成后,在xv6上运行uthread时应该会看到以下输出(三个线程可能以不同的顺序启动):

$ make qemu
...
$ uthread
thread_a started
thread_b started
thread_c started
thread_c 0
thread_a 0
thread_b 0
thread_c 1
thread_a 1
thread_b 1
...
thread_c 99
thread_a 99
thread_b 99
thread_c: exit after 100
thread_a: exit after 100
thread_b: exit after 100
thread_schedule: no runnable threads
$

该输出来自三个测试线程,每个线程都有一个循环,该循环打印一行,然后将CPU让出给其他线程。

然而在此时还没有上下文切换的代码,您将看不到任何输出。

您需要将代码添加到user/uthread.c中的thread_create()和thread_schedule(),以及user/uthread_switch.S中的thread_switch。一个目标是确保当thread_schedule()第一次运行给定线程时,该线程在自己的栈上执行传递给thread_create()的函数。另一个目标是确保thread_switch保存被切换线程的寄存器,恢复切换到线程的寄存器,并返回到后一个线程指令中最后停止的点。您必须决定保存/恢复寄存器的位置;修改struct thread以保存寄存器是一个很好的计划。您需要在thread_schedule中添加对thread_switch的调用;您可以将需要的任何参数传递给thread_switch,但目的是将线程从t切换到next_thread。

提示:

  1. thread_switch只需要保存/还原被调用方保存的寄存器(callee-save register,参见LEC5使用的文档《Calling Convention》)。为什么?
  2. 您可以在user/uthread.asm中看到uthread的汇编代码,这对于调试可能很方便。
  3. 这可能对于测试你的代码很有用,使用riscv64-linux-gnu-gdb的单步调试通过你的thread_switch,你可以按这种方法开始:
(gdb) file user/_uthread
Reading symbols from user/_uthread...
(gdb) b uthread.c:60

这将在uthread.c的第60行设置断点。断点可能会(也可能不会)在运行uthread之前触发。为什么会出现这种情况?

一旦您的xv6 shell运行,键入“uthread”,gdb将在第60行停止。现在您可以键入如下命令来检查uthread的状态:

(gdb) p/x *next_thread

使用“x”,您可以检查内存位置的内容:

(gdb) x/x next_thread->stack

您可以跳到thread_switch 的开头,如下:

(gdb) b thread_switch

(gdb) c

您可以使用以下方法单步执行汇编指令:

(gdb) si

gdb的在线文档在这里。

解析

首先我们要明白线程切换的流程:

  1. 保存当前线程的上下文:在进行线程切换之前,操作系统需要保存当前线程的状态,这包括寄存器的内容、程序计数器的值等,以便之后可以恢复到这个状态。
  2. 更新线程状态:将当前线程的状态更新为等待状态或者就绪状态,这取决于线程是否需要被调度。
  3. 选择新的线程:操作系统的调度器会选择一个新的线程来执行。这个选择过程可能基于多种调度算法,如轮转调度、优先级调度等。
  4. 加载新线程的上下文:一旦新的线程被选中,操作系统需要加载这个线程的上下文,包括恢复之前保存的寄存器状态和程序计数器的值。
  5. 更新线程状态:将新线程的状态更新为运行状态。
  6. 更新CPU寄存器:CPU的寄存器需要更新为新线程的寄存器值,这样CPU就可以从新线程的程序计数器指定的位置开始执行指令。
  7. 开始执行新线程:CPU开始执行新线程的指令。

线程除了独享的寄存器和栈之外,都是共享的部分,所以不需要全部切换,所以在用户级线程切换时,只需要保存寄存器和栈即可。
所以首先我们需要搞一个结构体来存储上下文。因为这是用户级线程,不需要设计用户栈和内核栈,用户页表和内核页表等等切换。

可以模仿proc.h中的内核上下文切换保存寄存器contest结构体

注意!注意!这次是在用户文件夹工作路径了

//user/uthread.c
struct context {
  uint64 ra;
  uint64 sp;

  // callee-saved
  uint64 s0;
  uint64 s1;
  uint64 s2;
  uint64 s3;
  uint64 s4;
  uint64 s5;
  uint64 s6;
  uint64 s7;
  uint64 s8;
  uint64 s9;
  uint64 s10;
  uint64 s11;
};

然后把它加到线程结构体中。

//user/uthread.c
struct thread {
  char       stack[STACK_SIZE]; /* the thread's stack */
  int        state;             /* FREE, RUNNING, RUNNABLE */
  struct context context;
};

然后模仿kernel/swtch.S,在user/uthread_switch.S中写入如下代码

//user/uthread_switch.S
	.text

	/*
         * save the old thread's registers,
         * restore the new thread's registers.
         */

	.globl thread_switch
thread_switch:
	/* YOUR CODE HERE */
	sd ra, 0(a0)
        sd sp, 8(a0)
        sd s0, 16(a0)
        sd s1, 24(a0)
        sd s2, 32(a0)
        sd s3, 40(a0)
        sd s4, 48(a0)
        sd s5, 56(a0)
        sd s6, 64(a0)
        sd s7, 72(a0)
        sd s8, 80(a0)
        sd s9, 88(a0)
        sd s10, 96(a0)
        sd s11, 104(a0)

        ld ra, 0(a1)
        ld sp, 8(a1)
        ld s0, 16(a1)
        ld s1, 24(a1)
        ld s2, 32(a1)
        ld s3, 40(a1)
        ld s4, 48(a1)
        ld s5, 56(a1)
        ld s6, 64(a1)
        ld s7, 72(a1)
        ld s8, 80(a1)
        ld s9, 88(a1)
        ld s10, 96(a1)
        ld s11, 104(a1)
	ret    /* return to ra */

修改thread_schedule,添加线程切换语句

//uthread.c

void 
thread_schedule(void)
{
  struct thread *t, *next_thread;

  /* Find another runnable thread. */
  next_thread = 0;
  t = current_thread + 1;
  for(int i = 0; i < MAX_THREAD; i++){
    if(t >= all_thread + MAX_THREAD)
      t = all_thread;
    if(t->state == RUNNABLE) {
      next_thread = t;
      break;
    }
    t = t + 1;
  }

  if (next_thread == 0) {
    printf("thread_schedule: no runnable threads\n");
    exit(-1);
  }

  if (current_thread != next_thread) {         /* switch threads?  */
    next_thread->state = RUNNING;
    t = current_thread;
    current_thread = next_thread;
    /* YOUR CODE HERE
     * Invoke thread_switch to switch from t to next_thread:
     * thread_switch(??, ??);
     */
     thread_switch((uint64)&t->context, (uint64)&current_thread->context);
  } else
    next_thread = 0;
}

thread_create函数中需要设置ra和sp寄存器,分别指向函数的入口地址和栈的初始地址,可以仿照 /kernel/proc.c 的127-128行来写

//uthread.c
void 
thread_create(void (*func)())
{
  struct thread *t;

  for (t = all_thread; t < all_thread + MAX_THREAD; t++) {
    if (t->state == FREE) break;
  }
  t->state = RUNNABLE;
  // YOUR CODE HERE
  t->context.ra = (uint64)func;
  t->context.sp = (uint64)t->stack + STACK_SIZE;
}

结果成功输出
在这里插入图片描述

二、Using threads (moderate)

在本作业中,您将探索使用哈希表的线程和锁的并行编程。您应该在具有多个内核的真实Linux或MacOS计算机(不是xv6,不是qemu)上执行此任务。最新的笔记本电脑都有多核处理器。

这个作业使用UNIX的pthread线程库。您可以使用man pthreads在手册页面上找到关于它的信息,您可以在web上查看,例如这里、这里和这里。

文件notxv6/ph.c包含一个简单的哈希表,如果单个线程使用,该哈希表是正确的,但是多个线程使用时,该哈希表是不正确的。在您的xv6主目录(可能是~/xv6-labs-2020)中,键入以下内容:

$ make ph
$ ./ph 1

请注意,要构建ph,Makefile使用操作系统的gcc,而不是6.S081的工具。ph的参数指定在哈希表上执行put和get操作的线程数。运行一段时间后,ph 1将产生与以下类似的输出:

100000 puts, 3.991 seconds, 25056 puts/second
0: 0 keys missing
100000 gets, 3.981 seconds, 25118 gets/second

在这里插入图片描述

您看到的数字可能与此示例输出的数字相差两倍或更多,这取决于您计算机的速度、是否有多个核心以及是否正在忙于做其他事情。

ph运行两个基准程序。首先,它通过调用put()将许多键添加到哈希表中,并以每秒为单位打印puts的接收速率。之后它使用get()从哈希表中获取键。它打印由于puts而应该在哈希表中但丢失的键的数量(在本例中为0),并以每秒为单位打印gets的接收数量。

通过给ph一个大于1的参数,可以告诉它同时从多个线程使用其哈希表。试试ph 2:

$ ./ph 2
100000 puts, 1.885 seconds, 53044 puts/second
1: 16579 keys missing
0: 16579 keys missing
200000 gets, 4.322 seconds, 46274 gets/second

在这里插入图片描述

这个ph 2输出的第一行表明,当两个线程同时向哈希表添加条目时,它们达到每秒53044次插入的总速率。这大约是运行ph 1的单线程速度的两倍。这是一个优秀的“并行加速”,大约达到了人们希望的2倍(即两倍数量的核心每单位时间产出两倍的工作)。

然而,声明16579 keys missing的两行表示散列表中本应存在的大量键不存在。也就是说,puts应该将这些键添加为什么两个线程都丢失了键,而不是一个线程?确定可能导致键丢失的具有2个线程的事件序列。在answers-thread.txt中提交您的序列和简短解释。

[!TIP] 为了避免这种事件序列,请在notxv6/ph.c中的put和get中插入lock和unlock语句,以便在两个线程中丢失的键数始终为0。相关的pthread调用包括:

pthread_mutex_t lock; // declare a lock
pthread_mutex_init(&lock, NULL); // initialize the lock
pthread_mutex_lock(&lock); // acquire lock
pthread_mutex_unlock(&lock); // release lock

当make grade说您的代码通过ph_safe测试时,您就完成了,该测试需要两个线程的键缺失数为0。在此时,ph_fast测试失败是正常的。到哈希表中,但出现了一些问题。请看一下notxv6/ph.c,特别是put()和insert()。

不要忘记调用pthread_mutex_init()。首先用1个线程测试代码,然后用2个线程测试代码。您主要需要测试:程序运行是否正确呢(即,您是否消除了丢失的键?)?与单线程版本相比,双线程版本是否实现了并行加速(即单位时间内的工作量更多)?

在某些情况下,并发put()在哈希表中读取或写入的内存中没有重叠,因此不需要锁来相互保护。您能否更改ph.c以利用这种情况为某些put()获得并行加速?提示:每个散列桶加一个锁怎么样?

修改代码,使某些put操作在保持正确性的同时并行运行。当make grade说你的代码通过了ph_safe和ph_fast测试时,你就完成了。ph_fast测试要求两个线程每秒产生的put数至少是一个线程的1.25倍。

解析:

首先回答为什么多线程中会丢失了键:简单来说这涉及到了多进程的隔离问题,当多个进程同时向 bucket放数据时,如果进程不是隔离的,也就是说都可以访问到同一个索引,那么就可能出现最终只有一个进程的值被放进去了,造成了键值覆盖。因此需要使用进程锁来避免这一情况。

put函数与get函数中关键就一句话

//通过键的哈希值计算出它应该被存储在哪个桶(bucket)中。NBUCKET是一个宏,表示桶的数量。
int i = key % NBUCKET;

这个NBUCKET为5。也就是有五个散列桶
所以需要队插入操作上锁,来使得每次插入只有一个进程使用。
看源代码notxv6/ph.c中一共有五个散列桶,那就来五个

// notxv6/ph.c
pthread_mutex_t lock[NBUCKET];

然后在put函数与get函数中添加上锁与解锁语句

// notxv6/ph.c
static 
void put(int key, int value)
{
  
  int i = key % NBUCKET;
  pthread_mutex_lock(&lock[i]);
  // is the key already present?
  struct entry *e = 0;
  for (e = table[i]; e != 0; e = e->next) {
    if (e->key == key)
      break;
  }
  if(e){
    // update the existing key.
    e->value = value;
  } else {
    // the new is new.
    insert(key, value, &table[i], table[i]);
  }
  pthread_mutex_unlock(&lock[i]);
}

static struct entry*
get(int key)
{
  int i = key % NBUCKET;
  pthread_mutex_lock(&lock[i]);

  struct entry *e = 0;
  for (e = table[i]; e != 0; e = e->next) {
    if (e->key == key) break;
  }
  pthread_mutex_unlock(&lock[i]);
  return e;
}

最后记得在main函数中初始化

......
// notxv6/ph.c
int
main(int argc, char *argv[])
{
  pthread_t *tha;
  void *value;
  double t1, t0;
  
  for (int i = 0; i < NBUCKET; i++) {
    pthread_mutex_init(&lock[i], NULL);
  }
......

很简单
在这里插入图片描述

三、Barrier (moderate)

在本作业中,您将实现一个屏障(Barrier):应用程序中的一个点,所有参与的线程在此点上必须等待,直到所有其他参与线程也达到该点。您将使用pthread条件变量,这是一种序列协调技术,类似于xv6的sleep和wakeup。
您应该在真正的计算机(不是xv6,不是qemu)上完成此任务。

文件notxv6/barrier.c包含一个残缺的屏障实现。

$ make barrier
$ ./barrier 2
barrier: notxv6/barrier.c:42: thread: Assertion `i == t' failed.

2指定在屏障上同步的线程数(barrier.c中的nthread)。每个线程执行一个循环。在每次循环迭代中,线程都会调用barrier(),然后以随机微秒数休眠。如果一个线程在另一个线程到达屏障之前离开屏障将触发断言(assert)。期望的行为是每个线程在barrier()中阻塞,直到nthreads的所有线程都调用了barrier()。

您的目标是实现期望的屏障行为。除了在ph作业中看到的lock原语外,还需要以下新的pthread原语;详情请看这里和这里。

确保您的方案通过make grade的barrier测试。

pthread_cond_wait在调用时释放mutex,并在返回前重新获取mutex。

我们已经为您提供了barrier_init()。您的工作是实现barrier(),这样panic就不会发生。我们为您定义了struct barrier;它的字段供您使用。

有两个问题使您的任务变得复杂:

  1. 你必须处理一系列的barrier调用,我们称每一连串的调用为一轮(round)。bstate.round记录当前轮数。每次当所有线程都到达屏障时,都应增加bstate.round。
  2. 您必须处理这样的情况:一个线程在其他线程退出barrier之前进入了下一轮循环。特别是,您在前后两轮中重复使用bstate.nthread变量。确保在前一轮仍在使用bstate.nthread时,离开barrier并循环运行的线程不会增加bstate.nthread。

使用一个、两个和两个以上的线程测试代码。

解析:

这个实验的意思就是添加一个同步节点。当所有进程都到达了这个节点就唤醒所有进程继续执行,没全到就到达的进程会被休眠。

最主要的是这个给出的结构体

// notxv6/barrier.c
struct barrier {
  pthread_mutex_t barrier_mutex; //互斥锁,用于保护共享资源的访问,确保在修改共享数据时只有一个线程可以访问
  pthread_cond_t barrier_cond; //一个条件变量,用于线程间的同步。当一个线程到达障碍物时,如果其他线程还没有到达,它会在这个条件变量上等待
  int nthread;      // Number of threads that have reached this round of the barrier
  //这个整数变量记录了已经到达当前轮次障碍物的线程数量。当这个数量等于参与同步的线程总数时,所有线程都到达了障碍物
  int round;     // Barrier round
  //这个整数变量用于跟踪障碍物的轮次。每次所有线程都到达障碍物时,round 会增加,表示进入下一轮
} bstate;

则:

// notxv6/barrier.c
static void 
barrier()
{
  // YOUR CODE HERE
  //
  // Block until all threads have called barrier() and
  // then increment bstate.round.
  //
  pthread_mutex_lock(&bstate.barrier_mutex); //上锁
  bstate.nthread++;
  
  if (bstate.nthread == nthread) {
    bstate.round++; //增加 round 的值
    bstate.nthread = 0; //重置 nthread
    pthread_cond_broadcast(&bstate.barrier_cond);  //唤醒所有等待的线程
  } else {
    pthread_cond_wait(&bstate.barrier_cond, &bstate.barrier_mutex); //在cond上进入睡眠,释放锁mutex
  }
  pthread_mutex_unlock(&bstate.barrier_mutex); //解锁
}

比较简单的
在这里插入图片描述

总结

这个实验主要是关于进程的使用,感觉意犹未尽,比起前面的确实是难度不高。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/734414.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

html侧导航栏客服栏

ico 替换 ICO <html xmlns"http://www.w3.org/1999/xhtml"><head><meta http-equiv"Content-Type" content"text/html; charsetutf-8"><title>返回顶部</title><script src"js/jquery-2.0.3.min.js"…

项目四 OpenStack身份管理

任务一 理解身份服务 1.1 •Keystone的基本概念 • 认证 &#xff08; Authentication &#xff09; —— 确认用户身份的过程 &#xff0c;又称身份验证 。 • 凭证 &#xff08; Credentials &#xff09; —— 又 称凭据&#xff0c;是用于 确认用户身份的数据 。 • 令牌…

SpringMVC系列三: Postman(接口测试工具)

接口测试工具 &#x1f49e;Postman(接口测试工具)Postman介绍Postman是什么Postman相关资源Postman安装Postman快速入门Postman完成Controller层测试其它说明 &#x1f49e;课后作业 上一讲, 我们学习的是SpringMVC系列二: 请求方式介绍 现在打开springmvc项目 &#x1f49e…

三电平光伏逆变器高效DPWM研究

1. 引言 本文从效率 提升角度出发 , 详细分析了逆变器不同调制策略下开关 器件及滤波器损耗分布情况 , 并在 50kW 组串式三电平光伏逆变器上对比分析采用 SVPWM 和 DPWM 两种 调制方法对逆变器效率和谐波的影响 , 最终验证了采用 DPWM 调制策略的优越性。 2 SVPWM 和 DPWM 对比…

浙江工商大学24计算机考研数据,好几个专业都接收调剂,计专复试线284分!

浙江工商大学&#xff08;Zhejiang Gongshang University&#xff09;&#xff0c;简称“浙商大”&#xff08;ZJSU&#xff09;&#xff0c;坐落于浙江省杭州市&#xff0c;是中华人民共和国教育部、中华人民共和国商务部和浙江省人民政府共建的浙江省重点建设高校&#xff0c…

解决:Xshell通过SSH协议连接Ubuntu服务器报“服务器发送了一个意外的数据包,received:3,expected:20”

下图所示&#xff1a; 日志也基本看不出来问题在哪&#xff0c;只是说断开了连接大概是验证失败。有幸在某论坛评论区找到了原因&#xff0c;是因为我的xshell版本太低了而服务器的ssh版本太高&#xff0c;高版本的ssh默认屏蔽了一部分不太安全的算法导致建立连接的时候验证失败…

“论软件架构风格”必过范文,软考高级,系统架构设计师论文

论文真题 软件体系结构风格是描述某一特定应用领域中系统组织方式的惯用模式。体系结构风格定义一个系统家族,即一个体系结构定义一个词汇表和一纽约束。词汇表中包含一些构件和连接件类型,而这组约束指出系统是如何将这些构件和连接件组合起来的。体系结构风格反应了领域中…

全国青少年人工智能创新挑战赛考试系统果然卡壳了

本比赛的官网地址是&#xff1a;http://aiic.china61.org.cn/niWXB 昨天考的全国青少年人工智能创新挑战赛的图形化编程卡的没有答题区&#xff0c;有的是空白&#xff0c;有的是组卷&#xff0c;大家先熟悉题目&#xff0c;构思怎么编程&#xff0c;两道编程题5050分值&#…

1.Triangle

一、你好&#xff0c;三角形 在OpenGL中&#xff0c;任何事物都在3D空间中&#xff0c;而屏幕和窗口却是2D像素数组&#xff0c;这导致OpenGL的大部分工作都是关于把3D坐标转变为适应你屏幕的2D像素。 3D坐标转为2D坐标的处理过程是由OpenGL的图形渲染管线&#xff08;Graphi…

Hallo技术:革新电影、游戏与虚拟现实中的动态肖像动画

在数字娱乐的浪潮中&#xff0c;逼真的动态肖像动画成为了电影制作、游戏开发和虚拟现实等领域不可或缺的一部分。复旦大学研发的Hallo技术&#xff0c;以其独特的扩散模型和分层音频驱动视觉合成模块&#xff0c;为这一领域带来了革命性的突破。 技术概览 Hallo技术是一种基…

【UML用户指南】-20-对基本行为建模-交互图

目录 1、概述 2、顺序图 2.1、两个不同于通信图的特征&#xff1a; 2.1.1、顺序图有对象生命线 2.1.2、顺序图有控制焦点 2.2、结构化控制 2.2.1、可选执行opt 2.2.2、条件执行alt 2.2.3、并行执行par 2.2.4、循环迭代执行loop 2.3、嵌套活动图 3、通信图 3.1、两…

Redis进阶 - 朝生暮死之Redis过期策略

概述 Redis 是一种常用的内存数据库&#xff0c;其所有的数据结构都可以设置过期时间&#xff0c;时间一到&#xff0c;就会自动删除。你可以想象 Redis 内部有一个死神&#xff0c;时刻盯着所有设置了过期时间的 key&#xff0c;寿命一到就会立即收割。 你还可以进一步站在死神…

关于笔记本电脑连接电源时触摸板失灵、卡顿、乱飘的问题

目录 前言 问题原因 解决方法 前言 我查阅了相关的资料和方法如下&#xff08;很感谢这位楼主大佬提供的问题所在&#xff09;&#xff1a; 问题原因 解决方法 那么解决方法无非就是几种&#xff08;方法仅供参考&#xff0c;不排除一些危险性&#xff09;&#xff1a; 1…

扫码称重上位机

目录 一 设计原型 二 后台代码 一 设计原型 模拟工具: 二 后台代码 主程序&#xff1a; using System.IO.Ports; using System.Net; using System.Net.Sockets; using System.Text;namespace 扫码称重上位机 {public partial class Form1 : Form{public Form1(){Initialize…

测试辅助工具(抓包工具)的使用1 之初识抓包工具(fiddler)

1.什么是抓包&#xff1f; 说明&#xff1a;客户端向服务器发送请求以及服务器响应客户端的请求,都是以数据包来传递的。 抓包&#xff08;packet capture&#xff09;&#xff1a;通过工具拦截客户端与服务器交互的数据包。 抓包后可以修改数据包的内容 2.为什么要抓包&…

【鸿蒙 HarmonyOS】尺寸设置:size/layoutWeight/constraintSize

一、背景 常见尺寸&#xff1a;width&#xff08;宽度&#xff09;、height&#xff08;高度&#xff09;、padding&#xff08;内边距&#xff09;、margin&#xff08;外边距&#xff09; 主要整理下size&#xff08;设置高宽尺寸&#xff09;、layoutWeight&#xff08;对…

C#事件详解及应用示例

简介 事件是使类具备向其它类通知发生的相关事情的能力。事件被分成两部分&#xff1a;一、引发或发送事件的类&#xff08;称发布者&#xff09;&#xff1b;二、处理或接收事件的类&#xff08;称订阅者&#xff09;。事件也是类型的成员。在 .NET 的桌面应用程序中&#xff…

梯度提升决策树(GBDT)的训练过程

以下通过案例&#xff08;根据行为习惯预测年龄&#xff09;帮助我们深入理解梯度提升决策树&#xff08;GBDT&#xff09;的训练过程 假设训练集有4个人&#xff08;A、B、C、D&#xff09;&#xff0c;他们的年龄分别是14、16、24、26。其中A、B分别是高一和高三学生&#x…

[SAP ABAP] 运算符

1.算数运算符 算术运算符描述加法-减法*乘法/除法MOD取余 示例1 输出结果: 输出结果: 2.比较运算符 比较运算符描述示例 等于 A B A EQ B <> 不等于 A <> B A NE B >大于 A > B A GT B <小于 A < B A LT B >大于或等于 A > B A GE B <小…

LLM功能应用的测试艺术:策略与实践

在人工智能技术日新月异的今天,大规模语言模型(LLMs)凭借其强大的自然语言处理能力,正逐渐成为众多应用和服务的核心驱动力。从智能客服到创作辅助,从信息检索到个性化推荐,LLMs的广泛应用对测试策略提出了全新的挑战。本文旨在探讨针对拥有LLM功能的应用或软件,如何制定…