数据挖掘与分析——数据预处理

  1. 数据探索

波士顿房价数据集:卡内基梅隆大学收集,StatLib库,1978年,涵盖了麻省波士顿的506个不同郊区的房屋数据。

一共含有506条数据。每条数据14个字段,包含13个属性,和一个房价的平均值。

数据读取方法:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
names =['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PTRATIO','B','LSTAT','MEDV']
data=pd.read_csv('housing.csv', names=names, delim_whitespace=True)
data1=data.head(10)
  1. 请绘制散点图探索波士顿房价数据集中犯罪率(CRIM)和房价中位数(MEDV)之间的相关性。
# 创建散点图
sns.scatterplot(x=data1['CRIM'], y=data1['ZN'])
# 添加数据标签
for i in range(len(data1['CRIM'])):
    plt.text(data1['CRIM'][i], data1['ZN'][i], str(i), fontsize=8, color='black')
# 添加标题
plt.title('Correlation between CRIM and ZN')
# 显示图形
plt.show()

 

  1. 请使用波士顿房价数据集中房价中位数(MEDV)来绘制箱线图。
# 创建箱线图
sns.boxplot(data['CRIM'])
# 添加数据标签
# for i in range(len(data['CRIM'])):
#     plt.text(1, data['CRIM'][i], data['CRIM'][i], horizontalalignment='center', verticalalignment='bottom')
plt.title('Boxplot of CRIM')
plt.show()

 

  1. 请使用暗点图矩阵探索波士顿房价数据集。
sns.pairplot(data)
plt.show()

print(data['CRIM'].corr(data['MEDV'],method='pearson'))
print(data['CRIM'].corr(data['MEDV'],method='spearman'))
print(data['CRIM'].corr(data['MEDV'],method='kendall'))

 

  1. 请分别使用皮尔逊(pearson)、斯皮尔曼(spearman)、肯德尔(kendall)相关系数对犯罪率(CRIM)和房价中位数(MEDV)之间的相关性进行度量。
print(data['CRIM'].corr(data['MEDV'],method='pearson'))
print(data['CRIM'].corr(data['MEDV'],method='spearman'))
print(data['CRIM'].corr(data['MEDV'],method='kendall'))

 

相关系数计算方法:

  1. 请绘制波士顿房价数据集中各变量之间相关系数的热力图。

需提前安装seaborn库:pip install seaborn


plt.figure(figsize=(12, 10))
sns.heatmap(data.corr(),annot=True,cmap='Blues_r')
plt.show()

 

  1. 数据预处理
x1x2x3x4x5x6x7x8x9x10x11x12x13x14y
122.0811.462441.5850001210012130
022.6772840.1650000216010
029.581.751441.250001228010
021.671530111112011
120.178.172641.96111402601591
00.5852881120211
117.426.52340.12500002601010
058.674.4621183.0411602435611
127.8311283000021765380
055.757.082486.7511312100510
133.51.752148114122538581
141.425211851161247011
120.671.251881.375113121400
34.92521487.511612010011
12.712842.415001232010
148.086.0424400002026911
129.584.52947.51121233011
018.9292640.7511202885921
1201.251440.1250000214050
022.425.66521142.585170212932581
028.170.5852640.04000210050
019.170.5851640.5851001216010
141.171.3352240.1650000216810
141.581.752440.21100216010
19.52640.7900002803510
132.751.521385.511312011
122.50.1251440.12500002200710
133.173.041882.0411112180180281
030.6712284211102220201
123.082.52841.0851111126021851
1270.75288113123121511
020.4210.51148000012154330
152.331.3751889.4610122001010
123.0811.52982.1251111122902851
142.831.2527413.875011123521130
174.83191110.040120203520
125264310012011
139.5813.9152948.625116127011
047.7582847.87511612012611
047.423214413.8751121251917051
123.17021340.0851002011
122.581.51640.5400012120680
126.751.12521481.2510002052991
163.330.542840.5851131218010
123.750.4151840.040120212870
020.7521140.71112124911
024.51.751840.1650000213210
116.170.042840.0400002011
029.521108200002256180
052.83152845.5111402022011
132.333.52440.50001223210
121.084.1251380.0400021401010
128.170.1251440.0850000221621010
1191.751842.3350001211270
127.583.251185.0850121220
127.831.52942111112434361
16.52653.51110205011
037.332.52380.21000022600
142.54.9151943.16510125214431
156.7512.252741.251141220011
143.1752352.250001214110
023.750.712940.250111224050
118.522341.5112021203011
040.833.52350.500001116010
024.50.521181.5100022808251
  1. 读取“银行贷款审批数据.xlsx”表,自变量为x1-x14,决策变量为y(1-同意贷款,0-不同意贷款),自变量中有连续变量(x2,x3,x5,x6,x7,x10,x13,x14)和离散变量(x1,x4,x8,x9,x11,x12),请对连续变量中的缺失值用均值策略填充,对离散变量中的缺失值用最频繁值策略填充。
import pandas as pd

# 读取Excel文件
df = pd.read_excel("银行贷款审批数据.xlsx")

# 定义连续变量和离散变量列表
continuous_vars = ['x2', 'x3', 'x5', 'x6', 'x7', 'x10', 'x13', 'x14']
discrete_vars = ['x1', 'x4', 'x8', 'x9', 'x11', 'x12']

# 使用均值填充连续变量的缺失值
for var in continuous_vars:
    df[var].fillna(df[var].mean(), inplace=True)

# 使用最频繁值填充离散变量的缺失值
for var in discrete_vars:
    most_frequent_value = df[var].mode()[0]
    df[var].fillna(most_frequent_value, inplace=True)

# 检查是否还有缺失值
missing_values = df.isnull().sum().sum()
if missing_values == 0:
    print("所有缺失值已填充。")
else:
    print("仍有缺失值未填充。")

# 输出填充后的数据框的前几行
print(df.head())

# 保存填充后的数据框到Excel文件
df.to_excel("填充后的银行贷款审批数据.xlsx", index=False)

 

 

x1x2x3x4x5x6x7x8x9x10x11x12x13x14y
122.0811.462441.5850001210012130
022.6772840.1650000216010
029.581.751441.250001228010
021.674.7216372981530111112011
120.178.172641.96111402601591
031.594380530.5852882.22917525811202183.760997111
117.426.52340.12500002601010
058.674.4621183.0411602435611
127.8311283000021765380
055.757.082486.7511312100510
133.51.7521482.229175258114122538581
141.425211851161247011
120.671.251881.375113121401023.6530610
134.92521487.511612010011
131.594380532.712842.415002.4245973651232010
148.086.042442.22917525800002026911
129.584.52947.51121233011
018.9292640.7511202885921
1201.251440.1250000214050
022.425.66521142.5851070212932581
028.170.5852640.0410002183.760997110050
019.170.5851640.5851001216010
141.171.3352240.1650000216810
141.581.752440.21102.4245973650216010
119.54.7216372982640.7900002803510
132.751.521385.511312011
122.50.1251440.12500002200710
133.173.041882.0411112180180281
030.6712284211102220201
123.082.52841.0851111126021851
1270.752882.229175258113123121511
020.4210.51148000012154330
152.331.3751889.46102.424597365122001010
123.0811.52982.1251111122902851
142.831.2527413.875011123521130
174.83191110.040120203520
1254.7216372982643100122011
139.5813.9152948.625116127011
047.7582847.87511612012611
047.423214413.8751121251917051
123.17021340.085102.42459736502011
122.581.51640.5400012120680
126.751.12521481.2510002052991
163.330.542840.5851131218010
123.750.4151840.040120212870
  1. 请使用StandardScaler对波士顿房价数据集进行零-均值规范化。
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
print(X_scaled)
print(X_scaled.shape)

  1. 在上一问规范化后的数据基础上使用PCA对数据进行降维处理(降维后的特征数量为2)。

 

pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
print(X_pca)
print(X_pca.shape)

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/734012.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

EOS black灵魂回响黑色无法联机/联机报错/联机失败怎么办

灵魂回响黑色EOS black中的职业系统,自由度非常高。从人物属性的精细调整,到装备属性的独特搭配,再到技能的个性化组合,每一步都充满了无限可能。更为惊喜的是,游戏中的角色职业不是一成不变的,而是随着手中…

基于STM32的智能插座项目

本项目基于stm32f103c8t6芯片通过集成众多模块和元器件,通过ESP01-S和阿里云平台实现智能插座的项目开展。资料获取到咸🐟:xy591215295250 \\\或者联系wechat 号:comprehensivable 随着电子科学与技术的快速发展,软硬件…

Linux开发讲课7---Linux sysfs文件系统

一、sysfs文件系统介绍 Sysfs(System Filesystem)是Linux内核提供的一种虚拟文件系统,用于向用户空间公开有关设备和驱动程序的信息。它类似于/proc文件系统,但是专注于设备和驱动程序信息,而非进程信息。 Sysfs通过文…

安装jfrog container registry(jcr)

1、下载软件 下载地址,本案例下载的是jfrog-artifactory-jcr-7.59.11-linux.tar.gz: https://releases.jfrog.io/artifactory/bintray-artifactory/org/artifactory/jcr/jfrog-artifactory-jcr/ 2、解压下载下来的压缩包 tar zxf jfrog-artifactory-jcr-7.59.11-linux.tar…

双向滑动选择器

插件地址:https://ext.dcloud.net.cn/plugin?id3940 注意: 当改变值是,让滑块自动滑动需要调用: this.$refs.powerSlider.updateValue(that.tempPowerValue[0], that.tempPowerValue[1], false); <view style"width: 90%;margin: 15px"><cj-slider ref…

ffmpeg音视频开发从入门到精通——ffmpeg 视频数据抽取

文章目录 FFmpeg视频处理工具使用总结环境配置主函数与参数处理打开输入文件获取流信息分配输出文件上下文猜测输出文件格式创建视频流并设置参数打开输出文件并写入头信息读取、转换并写入帧数据写入尾信息并释放资源运行程序注意事项源代码 FFmpeg视频处理工具使用总结 环境…

tp5学习基本控制器和视图

1 文件结构 正在上传…重新上传取消 application 主要操作目录 extend 扩展 public 入口文件 runtime 运行时文件 thinkphp 核心代码 vendor 三方扩展 2 public/index.php 解析 正在上传…重新上传取消 .htaccess Apache 可写文件 index.php 主目录 router.php 路由文件 3 inde…

LLC开关电源开发:第四节,LLC软件设计报告

LLC源代码链接 数控全桥LLC开发板软件设计报告  1. LLC硬件及软件框架2. LLC软件设计2.1 工程文件说明2.2 LLC中断设计2.2.1 20us中断2.2.2 5ms中断 2.3 LLC状态机设计2.3.1 初始化状态2.3.2 空闲状态2.3.3 软启动状态2.3.4 正常运行状态2.3.5 故障状态 2.4 环路设计2.4.1 环路…

YOLOv8中的C2f模块

文章目录 一、结构概述二、模块功能 一、结构概述 C2f块:首先由一个卷积块(Conv)组成&#xff0c;该卷积块接收输入特征图并生成中间特征图特征图拆分:生成的中间特征图被拆分成两部分&#xff0c;一部分直接传递到最终的Concat块&#xff0c;另一部分传递到多个Botleneck块进…

three.js 第八节 - gltf加载器、解码器

// ts-nocheck // 引入three.js import * as THREE from three // 导入轨道控制器 import { OrbitControls } from three/examples/jsm/controls/OrbitControls // 导入hdr加载器&#xff08;专门加载hdr的&#xff09; import { RGBELoader } from three/examples/jsm/loaders…

Unit redis-server.service could not be found.

我的报错如下Unit redis-server.service could not be found. 关键是刷新后台服务 sudo systemctl daemon-reload启动redis-server sudo systemctl start redis-server查看redis-Server服务状态 sudo systemctl status redis-server

【JUC并发编程】

Java并发常见面试题总结&#xff08;上&#xff09; 线程 什么是线程和进程? 何为进程? 进程是程序的一次执行过程&#xff0c;是系统运行程序的基本单位&#xff0c;因此进程是动态的。系统运行一个程序即是一个进程从创建&#xff0c;运行到消亡的过程。 在 Java 中&am…

Zigbee协议详解:低功耗无线通信的理想选择

什么是Zigbee协议 Zigbee是一种基于IEEE 802.15.4标准的无线通信协议&#xff0c;专为低功耗、低数据速率和短距离通信设计。它广泛应用于物联网&#xff08;IoT&#xff09;设备&#xff0c;如智能家居、工业自动化和健康监测等领域。Zigbee协议由Zigbee联盟维护和推广&#x…

[Redis]持久化机制

众所周知&#xff0c;Redis是内存数据库&#xff0c;也就是把数据存在内存上&#xff0c;读写速度很快&#xff0c;但是&#xff0c;内存的数据容易丢失&#xff0c;为了数据的持久性&#xff0c;还得把数据存储到硬盘上 也就是说&#xff0c;内存有一份数据&#xff0c;硬盘也…

【iOS】编译二进制文件说明

编译二进制文件说明 如何生成文件路径文件说明第一部分&#xff1a;.o文件第二部分&#xff1a;link第三部分&#xff1a;Segment第四部分&#xff1a;Symbol 如何生成 使用Xcode进行编译 &#xff0c;会生成二进制相关文件&#xff0c;可以更详细看产物的布局 项目Target -&…

使用粒子滤波(particle filter)进行视频目标跟踪

虽然有许多用于目标跟踪的算法&#xff0c;包括较新的基于深度学习的算法&#xff0c;但对于这项任务&#xff0c;粒子滤波仍然是一个有趣的算法。所以在这篇文章中&#xff0c;我们将介绍视频中的目标跟踪&#xff1a;预测下一帧中物体的位置。在粒子滤波以及许多其他经典跟踪…

容器之布局容器的演示

代码; #include <gtk-2.0/gtk/gtk.h> #include <glib-2.0/glib.h> #include <gtk-2.0/gdk/gdkkeysyms.h> #include <stdio.h>void change_image(GtkFileChooserButton *filebutton, // GdkEvent *event,GtkImage *image) {gtk_image_set_from_file(im…

Vue3 - 在项目中使用vue-i18n不生效的问题

检查和配置 Vue I18n 确保你已经正确安装了Vue I18n并且配置了组合API模式。 安装 Vue I18n npm install vue-i18nnext配置 i18n.js import { createI18n } from vue-i18n; import messages from ./messages;const i18n createI18n({legacy: false, // 使用组合 API 模式l…

DC-DC 高压降压、非隔离AC-DC、提供强大的动力,选择优质电源芯片-(昱灿)

畅享长续航&#xff0c;尽在我们的充电芯片&#xff01; 无论是手机、平板还是智能设备&#xff0c;长时间使用后电量不足总是令人头疼。然而&#xff0c;我们的充电芯片将为您带来全新的充电体验&#xff01;采用先进的技术&#xff0c;我们的充电芯片能够提供快速而稳定的充电…

逻辑地址 线性地址 物理地址 Linux kernel 内存管理设计

linux kernel 2.6以后的MM&#xff0c;受到了兼容 risc arch cpu 的 MM 的启发&#xff0c;新的 MM 架构对 x86 上任务切换的效率上也有明显提高。 新的MM架构&#xff0c;GDT 不再随着进程的创建与结束而创建和删除 新的表项。 TSS段 也只有一个&#xff0c;进程切换时&…