10权重衰减
"""
正则化是处理过拟合的常用方法:在训练集的损失函数中加入惩罚项,以降低学习到的模型的复杂度。
保持模型简单的一个特别的选择是使用L2惩罚的权重衰减。这会导致学习算法更新步骤中的权重衰减。
"""
import torch
from torch import nn
from d2l import torch as d2l
import liliPytorch as lp
n_train, n_test, num_input, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_input,1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
#初始化模型参数
def init_params():
w = torch.normal(0,1,size=(num_input,1), requires_grad=True)
b = torch.zeros(1,requires_grad=True)
return [w,b]
#定义L2范数惩罚
def l2_penalty(w):
return torch.sum(w.pow(2)) / 2
def l1_penalty(w):
return torch.sum(torch.abs(w))
# 定义模型
def linreg(X, w, b):
"""线性回归模型"""
return torch.matmul(X, w) + b
# 定义损失函数
def squared_loss(y_hat, y):
"""均方损失函数"""
return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
# 定义优化函数
def sgd(params, lr, batch_size):
"""小批量随机梯度下降"""
# 更新参数时不需要计算梯度
with torch.no_grad():
for param in params:
param -= lr * param.grad / batch_size # 参数更新
param.grad.zero_() # 梯度清零
#定义训练代码实现
def train(lambd):
w, b = init_params()
net, loss = lambda X: linreg(X, w, b), squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
# 增加了L2范数惩罚项,
# 广播机制使l2_penalty(w)成为一个长度为batch_size的向量
l = loss(net(X), y) + lambd * l2_penalty(w)
l.sum().backward()
sgd([w, b], lr, batch_size)
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
d2l.evaluate_loss(net, test_iter, loss)))
print('w的L2范数是:', torch.norm(w).item())
#忽略正则化直接训练¶
# train(lambd=0)
#w的L2范数是: 14.630496978759766
# 使用权重衰减
# train(lambd=3)
# d2l.plt.show()
#权重衰减-简洁实现
def train_concise(wd):
net = nn.Sequential(nn.Linear(num_input, 1))
for param in net.parameters():
param.data.normal_()
loss = nn.MSELoss(reduction='none')
num_epochs, lr = 100, 0.003
# 偏置参数没有衰减
trainer = torch.optim.SGD([
{"params":net[0].weight,'weight_decay': wd},
{"params":net[0].bias}], lr=lr)
animator = lp.Animator(xlabel='epochs', ylabel='loss', yscale='log',
xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):
for X, y in train_iter:
trainer.zero_grad()
l = loss(net(X), y)
l.mean().backward()
trainer.step()
if (epoch + 1) % 5 == 0:
animator.add(epoch + 1,
(d2l.evaluate_loss(net, train_iter, loss),
d2l.evaluate_loss(net, test_iter, loss)))
print('w的L2范数:', net[0].weight.norm().item())
train_concise(0)
d2l.plt.show()
# w的L2范数是: 0.33992505073547363
运行结果: