[Redis]缓存常见问题解决(缓存穿透、击穿、雪崩一文解决!通俗易懂、代码实战!手把手教你解决缓存问题三兄弟!)

Redis常见问题解决

要求

只用一种缓存技术,从实验点中挑一些试验进行试验原理。

1.缓存原理

目标:理解缓存的基本原理和工作机制。

实验步骤:

  1. 阅读各缓存技术机制的文档和官方资料。
  2. 实现一个简单的应用程序,模拟数据的读写和缓存操作。
  3. 观察实时操作日志,了解缓存的实际运行情况。

实验

  1. 缓存的基本原理主要围绕以下几个核心概念:

    • 时间局部性与空间局部性:缓存利用了程序访问数据的时间局部性和空间局部性,即如果一个数据被访问过,它很可能在不久的将来再次被访问;并且,如果一个数据被访问,其相邻的数据也可能很快被访问。

    • 高速存储介质:缓存通常位于更快的存储介质上,比如内存,相比硬盘等慢速存储,能显著提升数据访问速度。

    • 缓存命中与未命中:当请求的数据在缓存中存在时称为缓存命中,此时直接从缓存返回数据,无需访问较慢的后端存储;反之,如果数据不在缓存中,则称为缓存未命中,需要从后端加载数据并存储到缓存中,以便下次快速访问。

    • 缓存策略:包括但不限于LRU(Least Recently Used,最近最少使用)、LFU(Least Frequently Used,最不经常使用)和FIFO(First In First Out,先进先出)等淘汰策略,以及过期策略、缓存更新策略等。

    • 缓存一致性:在多线程或多进程环境下,确保缓存与数据源保持一致性的机制,如写直达、写回等。

  2. 以下是一个简化的Java示例,使用HashMap模拟内存缓存:

    import java.util.HashMap;
    import java.util.Map;
    
    public class SimpleCacheExample {
        private final Map<String, String> cache = new HashMap<>();
    
        public String getUserInfo(String userId) {
            // 先尝试从缓存中获取数据
            String userInfo = cache.get(userId);
            if (userInfo == null) {
                // 如果缓存中没有,模拟从数据库读取
                userInfo = fetchFromDatabase(userId);
                // 将数据放入缓存
                cache.put(userId, userInfo);
                System.out.println("缓存未命中!!!");
            } else {
                System.out.println("缓存命中!!!");
            } 
            return userInfo;
        }
    
        private String fetchFromDatabase(String userId) {
            // 这里实际应调用数据库查询逻辑,这里简单模拟
            return "UserInfo of " + userId;
        }
    
        public static void main(String[] args) {
            SimpleCacheExample cacheExample = new SimpleCacheExample();
            System.out.println(cacheExample.getUserInfo("1001")); // 首次访问,会从数据库获取
            System.out.println(cacheExample.getUserInfo("1001")); // 再次访问,直接从缓存获取
        }
    }
    
  3. 实时操作日志:

    1. 观察首次访问

      在这里插入图片描述

    2. 未命中缓存,查询数据库

      在这里插入图片描述

    3. 观察第二次访问

      在这里插入图片描述

    4. 命中缓存!直接返回结果。

      在这里插入图片描述

    5. 程序运行结果(首次访问,会从数据库获取。再次访问,直接从缓存获取。)

      在这里插入图片描述

2.缓存击穿

目标:模拟和解决缓存击穿问题。

实验步骤:

  1. 设计一个常被请求的热点数据。
  2. 启动多个并发请求同时访问该热点数据,观察缓存是否会因此而失效。
  3. 实现解决缓存击穿的方法,比如使用互斥锁或者提前加载数据。

实验

  1. 我们首先模拟实验环境(使用Redis作为缓存)

    查询心理健康产品详情接口:

    @Resource
    private RedisTemplate redisTemplate;
    int count = 1;
    
    @ApiOperation("查询心理健康产品详情")
    @GetMapping("/detail")
    public R<MentalHealthProduce> detail(@RequestParam(value = "id") String id) {
        MentalHealthProduce mentalHealthProduce;
    
        // 动态构造key
        String key = "produce_" + id; // 例:produce_1397844391040167938
    
        // 先从Redis中获取缓存数据
        mentalHealthProduce = (MentalHealthProduce) redisTemplate.opsForValue().get(key);
        // 如果存在, 直接返回, 无需查询数据库
        if (mentalHealthProduce != null) {
            return R.success(mentalHealthProduce);
        }
    
        mentalHealthProduce = mentalHealthProduceService.getById(id);
        
        // 这里每一次进行数据库查询我们进行打印日志
        System.out.println("查询数据库次数:" + count++);
        if (mentalHealthProduce == null) {
            return R.error("心理健康产品不存在");
        }
    
        // 将查询到的热点数据缓存到Redis中,过期时间为3秒
        redisTemplate.opsForValue().set(key, mentalHealthProduce, 3, TimeUnit.SECONDS);
    
        return R.success(mentalHealthProduce);
    }
    
  2. 我们进行压测,查看效果(开启10个线程,压测10秒)

    在这里插入图片描述

    我们观察控制台:即使我们开启了缓存,但在失效的时间内仍然请求了38次,在高并发中还是存在风险

    在这里插入图片描述

  3. 我们进行对缓存击穿的解决

    1. 热点数据永不过期(把过期时间取消即可,不再演示)

    2. 添加互斥锁

      1. 修改代码逻辑(加锁再去获取数据)

        // 动态构造key
        String key = "produce_" + id; // 例:produce_1397844391040167938
        // 创建基于id的唯一锁
        String lockKey = "lock_produce_" + id;
        
        // 尝试获取基于id的锁
        RLock lock = redissonClient.getLock(lockKey);
        lock.lock(); // 先加锁,确保并发安全
        
        try {
            // 先从Redis中获取缓存数据
            mentalHealthProduce = (MentalHealthProduce) redisTemplate.opsForValue().get(key);
            // 如果存在, 直接返回, 无需查询数据库
            if (mentalHealthProduce != null) {
                return R.success(mentalHealthProduce);
            }
        
            mentalHealthProduce = mentalHealthProduceService.getById(id);
        
            // 这里每一次进行数据库查询我们进行打印日志
            System.out.println("查询数据库次数:" + count++);
            if (mentalHealthProduce == null) {
                return R.error("心理健康产品不存在");
            }
        
            // 将查询到的热点数据缓存到Redis中
            redisTemplate.opsForValue().set(key, mentalHealthProduce, 3, TimeUnit.SECONDS);
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            // 3、释放锁
            lock.unlock();
        }
        
      2. 再次进行压测:开启10个线程,压测10秒

        在这里插入图片描述

      3. 观察控制台日志:我们过期时间设置为3秒,正常来说10秒压测只会进行四次数据库查询

        在这里插入图片描述

3.缓存穿透

目标:模拟和解决缓存穿透问题。

实验步骤:

  1. 构造一个不存在于缓存和数据库中的无效数据。
  2. 启动多个并发请求同时访问该无效数据,观察缓存是否被绕过直接访问数据库。
  3. 实现解决缓存穿透的方法,比如使用布隆过滤器或者空对象缓存。

实验

  1. 我们首先模拟实验环境(使用Redis作为缓存)

    查询文章接口:

    @ApiOperation("查询文章详情")
    @GetMapping("/detail")
    public R<ArticleResp> detail(@RequestParam(value = "id") String id) {
        // 构造返回参数
        ArticleResp articleResp;
    
        // 动态构造key
        String key = "article_" + id; // 例:article_1397844391040167938
    
        // 先从Redis中获取缓存数据
        articleResp = (ArticleResp) redisTemplate.opsForValue().get(key);
        // 如果存在, 直接返回, 无需查询数据库
        if (articleResp != null) {
            return R.success(articleResp);
        }
    
        Article article = articleService.getById(id);
        if (article == null) {
            return R.error("文章不存在");
        }
    
        articleResp = new ArticleResp();
        BeanUtils.copyProperties(article, articleResp);
    
        // 设置点赞数
        int count = likeService.count(new LambdaQueryWrapper<Like>()
                                      .eq(Like::getEventId, id));
        articleResp.setLikeNum(count);
    
        // 设置评论列表
        List<CommentResp> commentRespList = commentService.list(new LambdaQueryWrapper<Comment>()
                                                                .eq(Comment::getEventId, id))
            .stream()
            .map(comment -> {
                // ......
                return commentResp;
            }).collect(Collectors.toList());
        articleResp.setCommentRespList(commentRespList);
    
        // 将查询到的文章数据缓存到Redis中
        redisTemplate.opsForValue().set(key, articleResp, 1, TimeUnit.HOURS);
    
        return R.success(articleResp);
    }
    
  2. 我们请求一个不存在的id值(id=1)来查看查询情况

    在这里插入图片描述

    可以看到,确实是请求了数据库的(缓存失效),如果黑客进行大量请求,系统将存在巨大隐患。

  3. 我们进行压测,查看效果(开启10个线程,压测10轮)

    在这里插入图片描述

  4. 我们进行对缓存穿透的解决

    1. 缓存无效数据

      • 修改代码(无效数据同样进行缓存)

        在这里插入图片描述

      • 再次进行压测:同样10个线程进行10轮压测,请求数增多(150%)的情况下平均响应时间还缩短了将近35%!!!

        在这里插入图片描述

      • 但这种处理方式是有问题的,假如传进来的这个不存在的Key值每次都是随机的,那存进Redis也没有意义。

    2. 布隆过滤器(Redisson实现)

      在这里插入图片描述

      1. pom.xml中导入Redisson依赖

        <!--Redisson-->
        <dependency>
            <groupId>org.redisson</groupId>
            <artifactId>redisson-spring-boot-starter</artifactId>
            <version>3.17.6</version>
        </dependency>
        
      2. RedisConfig中添加以下配置(Redis进行正常配置即可)

        @Value("${spring.redis.host}")
        private String host;
        
        @Value("${spring.redis.port}")
        private String port;
        
        @Bean
        public RedissonClient redisson() {
            //创建配置
            Config config = new Config();
            config.useSingleServer().setAddress("redis://" + host + ":" + port);
            //根据config创建出RedissonClient实例
            return Redisson.create(config);
        }
        
      3. 项目中使用

        @Resource
        private RedissonClient redissonClient;
        private RBloomFilter<String> bloomFilter;
        
        @PostConstruct // 项目启动的时候执行该方法,也可以理解为在spring容器初始化的时候执行该方法
        public void init() {
            // 启动项目时初始化bloomFilter
            List<Article> articleList = articleService.list();
            //参数:布隆过滤器的名字
            bloomFilter = redissonClient.getBloomFilter("articleFilter");
            // 初始化布隆过滤器  预计数据量   误判率
            bloomFilter.tryInit(1000L, 0.01);
            for (Article article : articleList) {
                bloomFilter.add(article.getId());
            }
        }
        

        因为我们已经初始化过数据,所以在查询时可以先查询布隆过滤器

        在这里插入图片描述

      4. 观察实际运行情况

        在这里插入图片描述

        在这里插入图片描述

4.缓存雪崩

目标:模拟和解决缓存雪崩问题。

实验步骤:

  1. 设定多个缓存数据的失效时间相同,并在某一时刻让它们同时失效。
  2. 启动多个并发请求,观察在缓存数据失效时的响应时间和Redis服务器的负载情况。
  3. 实现解决缓存雪崩的方法,比如使用不同的失效时间或者限流策略。

实验

  1. 我们首先模拟实验环境(使用Redis作为缓存)

    我们事先将全部数据存入数据库,并把所有数据存活时间都设置为60秒:

    @PostConstruct // 项目启动的时候执行该方法,也可以理解为在spring容器初始化的时候执行该方法
    public void init() {
        // 启动项目时事先存入Redis热点数据
        List<MentalHealthProduce> produceList = mentalHealthProduceService.list();
        for (MentalHealthProduce produce : produceList) {
            String key = "produce_" + produce.getId(); // 例:produce_1397844391040167938
            redisTemplate.opsForValue().set(key, produce, 60, TimeUnit.SECONDS);
        }
        System.out.println("当前时间" + new Date());
    }
    
  2. 在缓存快要失效时,我们进行压测查看效果(开启10000个线程,压测10秒)

    在这里插入图片描述

    可以看到,在缓存同一时间失效的情况下,还是会有很多请求同时请求数据库,给数据库造成一定的压力!

    在这里插入图片描述

    在这里插入图片描述

  3. 我们进行对缓存雪崩的解决

    1. 使用随机或梯度失效时间(为每项数据设置一个随机范围内的过期时间,或者采用梯度失效策略,即相近的数据项过期时间错开一定间隔),示例代码:

      Random random = new Random();
      for (String user : users) {
          long expireTime = 24 * 60 * 60 + random.nextInt(300); // 基础24小时过期时间加上0-5分钟的随机偏移
          RBucket<Object> bucket = redisson.getBucket("user:" + user);
          bucket.set(userDetails, expireTime, TimeUnit.SECONDS);
      }
      
    2. 限流与降级(在服务端实施请求限流,避免在缓存失效瞬间服务被大量请求压垮。同时,可以设置服务降级策略,当请求超过阈值时返回降级内容(如静态数据、默认值或部分数据)而非直接失败)

      1. 限流实现

        Redisson 提供了 RRateLimiter 接口来实现限流功能,支持固定窗口、滑动窗口、令牌桶等多种限流算法。例如,使用令牌桶算法进行限流,可以这样配置:

        // 创建一个令牌桶限流器,每秒填充5个令牌,最多存储10个令牌
        RRateLimiter rateLimiter = redisson.getRateLimiter("myRateLimiter");
        rateLimiter.trySetRate(RateType.OVERALL, 5, 10, RateIntervalUnit.SECONDS);
        
        // 在需要限流的地方尝试获取令牌,如果获取不到则说明限流
        boolean permit = rateLimiter.tryAcquire(1);
        if (!permit) {
            // 限流逻辑,比如抛出异常或者返回错误信息
        }
        
      2. 降级实现

        在限流逻辑中加入降级逻辑,当检测到请求量过大或系统资源紧张时,主动返回简化版的服务响应或者错误信息,避免进一步加重系统负担。

        例如,可以在限流失败时,执行降级逻辑:

        if (!rateLimiter.tryAcquire(1)) {
            // 降级处理,例如返回默认值或者错误提示
            return "服务繁忙,请稍后再试";
        }
        

        另外,结合Spring框架或AOP(面向切面编程),可以更加灵活地在应用层面实现更复杂的降级策略。例如,通过自定义注解和切面来判断服务是否需要降级:

        @Retention(RetentionPolicy.RUNTIME)
        @Target(ElementType.METHOD)
        public @interface RateLimitAndFallback {
            // 可以定义一些配置属性,如降级时的返回值
        }
        
        @Aspect
        @Component
        public class RateLimitAndFallbackAspect {
        
            @Around("@annotation(rateLimitAndFallback)")
            public Object handleMethodWithRateLimit(ProceedingJoinPoint joinPoint, RateLimitAndFallback rateLimitAndFallback) throws Throwable {
                // 这里可以结合Redisson的限流逻辑
                if (!rateLimiter.tryAcquire(1)) {
                    // 根据注解或配置返回降级内容
                    return "降级响应内容";
                }
        
                // 正常执行方法
                return joinPoint.proceed();
            }
        }
        

        通过上述方式,我们可以结合Redisson的限流功能和自定义的降级策略,有效地应对高并发场景下的系统稳定性问题。

总结与优化

总结

  1. 缓存基本原理的实践揭示了缓存机制的核心优势,包括时间与空间局部性、高速存储介质的使用、命中与未命中的处理机制、多样化淘汰策略以及确保一致性的方法。通过简单的Java示例,我们直观体验了缓存对提升数据访问效率的显著作用。
  2. 缓存击穿问题通过模拟高并发访问热点数据,发现即使使用了缓存,数据过期时仍会导致数据库负载激增。采用永不过期策略和互斥锁(Mutex)解决了这一问题,有效降低了数据库压力,但需要注意永不过期策略需谨慎使用,以免造成内存压力。
  3. 缓存穿透现象通过构造不存在的数据请求,观察到直接绕过缓存访问数据库的现象。采用缓存无效数据(null值)以及布隆过滤器有效减少了无效数据库查询,提高了系统效率。布隆过滤器虽有误报可能,但在多数场景下能有效减轻数据库负担。
  4. 缓存雪崩的模拟与解决展示了当大量缓存同时过期时,系统响应时间和数据库负载的剧增。通过为数据设置随机或梯度过期时间以及实施限流与降级策略,显著改善了这一问题。限流保证了系统在高并发下的稳定性,而降级策略保证了即使在资源紧张时也能提供一定程度的服务。

优化与改进建议

  1. 精细化配置缓存策略:根据业务特点调整缓存过期时间,避免集中失效,使用梯度过期或随机过期策略分散风险。
  2. 动态调整限流阈值:根据系统实时负载动态调整限流阈值,以适应不同时间段的访问压力,避免过度限制或限制不足。
  3. 监控与预警系统:建立完善的监控体系,实时监测缓存命中率、系统负载、以及Redis服务器状态,设置阈值预警,及时发现并处理潜在问题。
  4. 优化缓存更新机制:采用异步更新策略,减少因更新缓存造成的阻塞,确保数据新鲜度的同时不影响用户体验。
  5. 分布式锁的优化:优化互斥锁的使用,减少锁等待时间,避免因锁竞争导致的性能瓶颈。探索使用读写锁或乐观锁机制,提高并发效率。
  6. 持续性能测试与调优:定期进行压力测试,模拟各种极端场景,根据测试结果不断调整和优化缓存策略和系统配置。
  7. 完善降级策略:细化降级逻辑,根据不同场景提供更合理的降级内容,如提供有限功能、默认数据或历史数据,确保用户体验。

通过上述措施,可以显著增强缓存系统性能,提高系统的稳定性和用户体验,降低运营成本。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/733156.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ffmpeg+nginx+video实现rtsp流转hls流,web页面播放

项目场景&#xff1a; 最近调试海康摄像头需要将rtsp流在html页面播放,因为不想去折腾推拉流&#xff0c;所以我选择ffmpeg转hls流&#xff0c;nginx转发&#xff0c;html直接访问就好了 1.首先要下载nginx和ffmpeg 附上下载地址&#xff1a; nginx nginx news ffmpeg htt…

Java开发-面试题-0006-DELETE、VACUUM和TRUNCATE的区别

Java开发-面试题-0006-DELETE、VACUUM和TRUNCATE的区别 更多内容欢迎关注我&#xff08;持续更新中&#xff0c;欢迎Star✨&#xff09; Github&#xff1a;CodeZeng1998/Java-Developer-Work-Note 技术公众号&#xff1a;CodeZeng1998&#xff08;纯纯技术文&#xff09; …

TF-IDF、BM25传统算法总结

1. TF-IDF算法 F-IDF&#xff08;词频-逆文档频率&#xff09;是一种用于衡量文本中词语重要性的方法&#xff0c;特别适用于信息检索和文本挖掘任务。下面会拆分为两部分深入讲解TF-IDF的计算过程&#xff0c;以便更好地理解。 TF-IDF的计算过程可以分为两个主要部分&#xf…

Butter Knife 8

// 部分代码省略… Override public View getView(int position, View view, ViewGroup parent) { ViewHolder holder; if (view ! null) { holder (ViewHolder) view.getTag(); } else { view inflater.inflate(R.layout.testlayout, parent, false); holder new ViewHolde…

Ansible 自动化运维实践

随着 IT 基础设施的复杂性不断增加&#xff0c;手动运维已无法满足现代企业对高效、可靠的 IT 运维需求。Ansible 作为一款开源的自动化运维工具&#xff0c;通过简洁易用的 YAML 语法和无代理&#xff08;agentless&#xff09;架构&#xff0c;极大简化了系统配置管理、应用部…

物理层(二)

2.2 传输介质 2.2.1 双绞线、同轴电缆、光纤和无线传输介质 传输介质也称传输媒体&#xff0c;是数据传输系统中发送器和接收器之间的物理通路。传输介质可分为:①导向传输介质&#xff0c;指铜线或光纤等&#xff0c;电磁波被导向为沿着固体介质传播:②)非导向传输介质&…

6月27日云技术研讨会 | 中央集中架构新车型功能和网络测试解决方案

会议摘要 “软件定义汽车”新时代下&#xff0c;整车电气电气架构向中央-区域集中式发展已成为行业共识&#xff0c;车型架构的变革带来更复杂的整车功能定义、更多的新技术的应用&#xff08;如SOA服务化、TSN等&#xff09;和更短的车型研发周期&#xff0c;对整车和新产品研…

【yolov8语义分割】跑通:下载yolov8+预测图片+预测视频

1、下载yolov8到autodl上 git clone https://github.com/ultralytics/ultralytics 下载到Yolov8文件夹下面 另外&#xff1a;现在yolov8支持像包一样导入&#xff0c;pip install就可以 2、yolov8 语义分割文档 看官方文档&#xff1a;主页 -Ultralytics YOLO 文档 还能切…

GLM-4V模型学习

智谱AI引领技术前沿&#xff0c;推出了新一代预训练模型GLM-4系列&#xff0c;其中的GLM-4-9B作为开源版本&#xff0c;展现了其在人工智能领域的深厚实力。在语义理解、数学运算、逻辑推理、代码编写以及广泛知识领域的数据集测评中&#xff0c;GLM-4-9B及其人类偏好对齐的版本…

AI音乐模型:创新还是颠覆?

文章目录 AI音乐大模型的崛起音乐创作门槛的降低与兴奋AI音乐作品的版权归属问题创意产业在AI阴影下的生长结语 &#x1f389;欢迎来到AIGC人工智能专栏~探索Java中的静态变量与实例变量 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒&#x1f379;✨博客主页&#xff1a;IT陈寒的博客&…

Apple - Text System Storage Layer Overview

本文翻译整理自&#xff1a;Text System Storage Layer Overview&#xff08;更新日期&#xff1a;2012-09-19 https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/TextStorageLayer/TextStorageLayer.html#//apple_ref/doc/uid/10000087i 文章目录 …

java:JWT的简单例子

【pom.xml】 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId><version>2.3.12.RELEASE</version> </dependency> <dependency><groupId>org.springf…

程序猿成长之路之数据挖掘篇——决策树分类算法(1)——信息熵和信息增益

决策树不仅在人工智能领域发挥着他的作用&#xff0c;而且在数据挖掘中也在分类领域中独占鳌头。了解决策树的思想是学习数据挖掘中的分类算法的关键&#xff0c;也是学习分类算法的基础。 什么是决策树 用术语来说&#xff0c;决策树&#xff08;Decision Tree&#xff09;是…

STM32驱动-ads1112

汇总一系列AD/DA的驱动程序 ads1112.c #include "ads1112.h" #include "common.h"void AD5726_Init(void) {GPIO_InitTypeDef GPIO_InitStructure;RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOC, ENABLE );//PORTA、D时钟使能 G…

SQLite数据库(数据库和链表双向转换)

文章目录 SQLite数据库一、SQLite简介1、SQLite和MySQL2、基于嵌入式的数据库 二、SQLite数据库安装三、SQLite的常用命令四、SQLite的编程操作1、SQLite数据库相关API&#xff08;1&#xff09;头文件&#xff08;2&#xff09;sqlite3_open()&#xff08;3&#xff09;sqlite…

Springboot拓展之整合邮件 JavaMail的使用与实操

邮件 电子邮件仍然是我们企业间交往的一种非常常见的方式 发送简单邮件 第一步首先导入坐标 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-mail</artifactId><version>2.6.13</version&…

架构师指南:现代 Datalake 参考架构

这篇文章的缩写版本于 2024 年 3 月 26 日出现在 The New Stack 上。 旨在最大化其数据资产的企业正在采用可扩展、灵活和统一的数据存储和分析方法。这一趋势是由企业架构师推动的&#xff0c;他们的任务是制定符合不断变化的业务需求的基础设施。现代数据湖体系结构通过将数…

设计模式——设计模式原则

设计模式 设计模式原则 单一职责原则&#xff08;SPS&#xff09;&#xff1a; 又称单一功能原则&#xff0c;面向对象五个基本原则&#xff08;SOLID&#xff09;之一 原则定义&#xff1a;一个类应该只有一个发生变化的原因 使用if else进行判断实现不好维护 模式场景&a…

ruoyi添加自己的菜单

先把自己自定义的view填写好 在菜单管理模块 因为我已经新增过&#xff0c;所以就看看我填的啥就行了 我发现一个问题&#xff0c;路由地址可以填index2或者scooldemo/index2都可以&#xff08;这个包含了文件夹路径&#xff09;&#xff0c;反正组件路径一定要填对就可以了。 …

刷代码随想录有感(112):动态规划——组合总和IV

题干&#xff1a; 代码&#xff1a; class Solution { public:int combinationSum4(vector<int>& nums, int target) {vector<int>dp(target 1, 0);dp[0] 1;for(int j 0; j < target; j){for(int i 0; i < nums.size(); i){if(j > nums[i] &…