性能工具之 MySQL OLTP Sysbench BenchMark 测试示例

文章目录

  • 一、前言
  • 二、测试环境
    • 1、服务器配置
    • 2、测试拓扑
  • 三、测试工具安装
  • 四、测试步骤
    • 1、导入数据
    • 2、压测数据
    • 3、清理数据
  • 五、结果解析
  • 六、最后

一、前言

做为一名性能工程师掌握对 MySQL 的性能测试是非常必要的,本文基于 Sysbench 对MySQL OLTP(联机事务处理) 的 BenchMark 测试案例详细介绍具体方法。

二、测试环境

1、服务器配置

数据库服务器:

  • 操作系统:CentOS 7.6 64位
  • CPU:8核
  • 内存:16GB
  • 磁盘:500GB,最大吞吐量150 MB/s
  • 数据库版本:MySQL Community Server 8.0.37
  • 网络:局域网

测试服务器:

  • 操作系统:CentOS 7.6 64位
  • CPU:8核
  • 内存:16GB
  • 磁盘:500GB,最大吞吐量150 MB/s
  • 测试软件:sysbench-1.0.12
  • 网络:局域网

2、测试拓扑

在这里插入图片描述
📢注意:

  • 尽量不要在 MySQL 本服务器上进行测试,一方面可能无法体现网络(哪怕是局域网)的影响,另一方面,sysbench 的运行(并发数较高时)会影响挤压 MySQL 服务器性能。
  • 在开始 MySQL 测试之前,应针对数据库服务器做好 BenchMark 测试。

三、测试工具安装

Sysbench是一款基于LuaJIT的,模块化多线程基准测试工具,常用于数据库基准测试。通过内置的数据库测试模型,采用多线程并发操作来评估数据库的性能。了解Sysbench更多详情,请访问:https://github.com/akopytov/sysbench。

本次测试使用的Sysbench版本为1.0.12,具体的安装命令如下:

# wget -c https://github.com/akopytov/sysbench/archive/1.0.12.zip
# yum install autoconf libtool mysql mysql-devel vim unzip
# unzip 1.0.12.zip
# cd sysbench-1.0.12
# ./autogen.sh
# ./configure
# make
# make install
#sysbench --version

显示以下内容说明已安装成功。
在这里插入图片描述

四、测试步骤

请根据实际信息,替换数据库、连接IP与用户密码。

1、导入数据

(1)使用 MySQL 命令或第三方工具登录数据库,并创建测试数据库 “loadtest” 。

mysql -u root -P 3306 -h -p -e "create database loadtest"

(2)使用 sysbench 命令导入测试背景数据到 “loadtest” 数据库。

sysbench
--test=/usr/local/share/sysbench/tests/include/oltp_legacy/oltp.lua
--db-driver=mysql --mysql-db=loadtest --mysql-user=root
--mysql-password= --mysql-port=3306 --mysql-host= --oltp-tables-count=64 --oltp-table-size=10000000 --num-threads=20 prepare

脚本参数及其含义:

  • –test:指定要运行的测试脚本,这里选择的是一个OLTP(在线事务处理)负载测试脚本。oltp.lua是一个预定义的脚本,用于模拟常见的数据库操作。
  • –db-driver:指定数据库驱动程序,这里选择的是 MySQL。
  • –mysql-db:指定要测试的 MySQL 数据库名称,这里是loadtest数据库。
  • –mysql-user:指定用于连接 MySQL 数据库的用户名,这里是 root 用户。
  • mysql-password:指定用于连接 MySQL 数据库的密码,这里为空,意味着没有设置密码(不推荐在生产环境中使用空密码)。
  • –mysql-port:指定 MySQL 服务器监听的端口,这里是默认的 3306 端口。
  • –mysql-host:指定 MySQL 服务器的主机地址,这里为空,表示连接本地数据库。
  • –oltp-tables-count:指定用于测试的表的数量,这里是 64 个表。
  • –oltp-table-size:指定每个表中的行数,这里是 10,000,000 行。表示每个表有一千万条记录。
  • –num-threads:指定测试时使用的线程数,这里是 20 个线程。表示并发 20 个线程进行测试。
  • prepare:测试提前准备数据

本文是生成 64 张表,每张表有1千万数据,合计导入6亿4千万条数据。

显示下面信息说明已经成功完成测试数据生成:

WARNING: the --test option is deprecated. You can pass a script name or path on the command line without any options.
WARNING: --num-threads is deprecated, use --threads instead
sysbench 1.0.12 (using bundled LuaJIT 2.1.0-beta2)

......
Inserting 10000000 records into 'sbtest63'
Creating secondary indexes on 'sbtest63'...
Creating table 'sbtest64'...
Inserting 10000000 records into 'sbtest64'
Creating secondary indexes on 'sbtest64'...
[root@ecs-825d-1113052 ~]#

生产的表结构如下:

CREATE TABLE sbtest (
id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
k INTEGER UNSIGNED DEFAULT '0' NOT NULL,
c CHAR(120) DEFAULT '' NOT NULL,
pad CHAR(60) DEFAULT '' NOT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB

生产数据样例如下:
在这里插入图片描述

这里用到 oltp.lua 这个关键脚本,我们单独拿出分析下,源码如下:

[root@ecs-825d-1113052 ~]# cat /usr/local/share/sysbench/tests/include/oltp_legacy/oltp.lua
-- 匹配test路径并检查
pathtest = string.match(test, "(.*/)")
if pathtest then
   dofile(pathtest .. "common.lua")
else
   require("common")
end

-- 线程初始化函数
function thread_init()
   -- 设置变量
   set_vars()

   -- 检查数据库驱动和表引擎类型
   if (((db_driver == "mysql") or (db_driver == "attachsql")) and mysql_table_engine == "myisam") then
      local i
      local tables = {}
      -- 为每个表构建锁定语句
      for i=1, oltp_tables_count do
         tables[i] = string.format("sbtest%i WRITE", i)
      end
      -- 设置锁定和解锁查询
      begin_query = "LOCK TABLES " .. table.concat(tables, " ,")
      commit_query = "UNLOCK TABLES"
   else
      -- 默认使用事务的开始和提交语句
      begin_query = "BEGIN"
      commit_query = "COMMIT"
   end
end

-- 获取范围查询的条件字符串
function get_range_str()
   local start = sb_rand(1, oltp_table_size)
   return string.format(" WHERE id BETWEEN %u AND %u",
                        start, start + oltp_range_size - 1)
end

-- 定义事件函数
function event()
   local rs
   local i
   local table_name
   local c_val
   local pad_val
   local query

   -- 随机选择一个表
   table_name = "sbtest".. sb_rand_uniform(1, oltp_tables_count)
   -- 如果没有跳过事务,则开始事务
   if not oltp_skip_trx then
      db_query(begin_query)
   end

   -- 如果不是仅写操作
   if not oltp_write_only then
      -- 执行点查询
      for i=1, oltp_point_selects do
         rs = db_query("SELECT c FROM ".. table_name .." WHERE id=" .. sb_rand(1, oltp_table_size))
      end

      -- 如果需要执行范围查询
      if oltp_range_selects then
         -- 简单范围查询
         for i=1, oltp_simple_ranges do
            rs = db_query("SELECT c FROM ".. table_name .. get_range_str())
         end

         -- 范围求和查询
         for i=1, oltp_sum_ranges do
            rs = db_query("SELECT SUM(K) FROM ".. table_name .. get_range_str())
         end

         -- 范围排序查询
         for i=1, oltp_order_ranges do
            rs = db_query("SELECT c FROM ".. table_name .. get_range_str() .. " ORDER BY c")
         end

         -- 范围去重查询
         for i=1, oltp_distinct_ranges do
            rs = db_query("SELECT DISTINCT c FROM ".. table_name .. get_range_str() .. " ORDER BY c")
         end
      end
   end

   -- 如果不是只读操作
   if not oltp_read_only then
      -- 执行索引更新
      for i=1, oltp_index_updates do
         rs = db_query("UPDATE " .. table_name .. " SET k=k+1 WHERE id=" .. sb_rand(1, oltp_table_size))
      end

      -- 执行非索引更新
      for i=1, oltp_non_index_updates do
         c_val = sb_rand_str("###########-###########-###########-###########-###########-###########-###########-###########-###########-###########")
         query = "UPDATE " .. table_name .. " SET c='" .. c_val .. "' WHERE id=" .. sb_rand(1, oltp_table_size)
         rs = db_query(query)
         if rs then
            print(query)
         end
      end

      -- 执行删除和插入操作
      for i=1, oltp_delete_inserts do
         i = sb_rand(1, oltp_table_size)
         rs = db_query("DELETE FROM " .. table_name .. " WHERE id=" .. i)
         c_val = sb_rand_str("###########-###########-###########-###########-###########-###########-###########-###########-###########-###########")
         pad_val = sb_rand_str("###########-###########-###########-###########-###########")
         rs = db_query("INSERT INTO " .. table_name ..  " (id, k, c, pad) VALUES " .. string.format("(%d, %d, '%s', '%s')",i, sb_rand(1, oltp_table_size) , c_val, pad_val))
      end
   end

   -- 如果没有跳过事务,则提交事务
   if not oltp_skip_trx then
      db_query(commit_query)
   end
end

这段 oltp.lua 代码的主要步骤如下:

  • 路径匹配与加载配置:
    • 检查并获取脚本的路径。
    • 如果路径存在,加载 common.lua 文件;否则使用 require 函数加载模块。
  • 线程初始化 (thread_init):
    • 初始化变量。
    • 根据数据库驱动和表引擎类型,决定是否使用锁表操作。
    • 如果数据库驱动是 mysql 或 attachsql 且表引擎为 myisam,则构建锁定和解锁查询语句。
    • 否则,使用默认的事务控制语句(BEGIN 和 COMMIT)。
  • 获取范围查询字符串 (get_range_str):
    • 随机生成一个起始ID。
    • 返回一个用于范围查询的条件字符串,指定查询范围为从起始ID到起始ID加上范围大小减去1。
  • 事件处理 (event):
    • 定义事件函数,该函数是 Sysbench 测试的核心部分
    • 事件函数包括以下操作:
      • 随机选择一个表。
      • 如果没有跳过事务,则开始事务。
      • 根据配置执行不同类型的查询和更新操作,包括点查询、范围查询、索引更新、非索引更新、删除和插入操作。
      • 范围查询包括简单范围查询、求和范围查询、排序范围查询和去重范围查询。
      • 如果没有跳过事务,则提交事务。

这段代码是典型的OLTP(联机事务处理)负载测试脚本,通过模拟多种数据库操作(查询、更新、删除、插入),来评估数据库在高并发访问场景下的性能表现。

2、压测数据

sysbench
--test=/usr/local/share/sysbench/tests/include/oltp_legacy/oltp.lua
--db-driver=mysql --mysql-db=loadtest --mysql-user=root
--mysql-password= --mysql-port=3306 --mysql-host=--oltp-tables-count=64
--oltp-table-size=10000000 --max-time=3600 --max-requests=0
--num-threads=200 --report-interval=3 --forced-shutdown=1 run

脚本参数及其含义:

  • –test:指定要运行的测试脚本,这里选择的是一个OLTP(在线事务处理)负载测试脚本。oltp.lua是一个预定义的脚本,用于模拟常见的数据库操作。
  • –db-driver:指定数据库驱动程序,这里选择的是 MySQL。
  • –mysql-db:指定要测试的 MySQL 数据库名称,这里是 loadtest 数据库。
  • –mysql-user:指定用于连接 MySQL 数据库的用户名,这里是 root 用户。
  • mysql-password:指定用于连接 MySQL 数据库的密码,这里为空,意味着没有设置密码(不推荐在生产环境中使用空密码)。
  • –mysql-port:指定 MySQL 服务器监听的端口,这里是默认的 3306 端口。
  • –mysql-host:指定 MySQL 服务器的主机地址,这里为空,表示连接本地数据库。
  • –oltp-tables-count:指定用于测试的表的数量,这里是 64 个表。
  • –oltp-table-size:指定每个表中的行数,这里是 10,000,000 行。表示每个表有一千万条记录。
  • –max-time:指定测试的最大持续时间为3600秒(1小时)。
  • –max-requests:指定要执行的最大请求数。值为0表示请求数不受限制,直到达到最大时间。
  • –num-threads:指定测试时使用的线程数,这里是 200 个线程。表示并发 200 个线程进行测试。
  • –report-interval:指定报告中间结果的时间间隔(每3秒报告一次)。
  • –forced-shutdown:指定如果达到最大时间,Sysbench应该强制关闭测试(1表示启用)。
  • run:开始运行测试的命令。

简要说明就是并发200线程,压测1小时,每3秒打印一次结果等。

3、清理数据

测试完成后,可以运行以下脚本清理测试数据:

sysbench
--test=/usr/local/share/sysbench/tests/include/oltp_legacy/oltp.lua
--db-driver=mysql --mysql-db=loadtest --mysql-user=root
--mysql-password= --mysql-port=3306 --mysql-host= --oltp-tables-count=64 --oltp-table-size=10000000--max-time=3600 --max-requests=0 --num-threads=200 cleanup

脚本参数及其含义:

  • –test:指定要运行的测试脚本,这里选择的是一个OLTP(在线事务处理)负载测试脚本。oltp.lua是一个预定义的脚本,用于模拟常见的数据库操作。
  • –db-driver:指定数据库驱动程序,这里选择的是 MySQL。
  • –mysql-db:指定要测试的 MySQL 数据库名称,这里是 loadtest 数据库。
  • –mysql-user:指定用于连接 MySQL 数据库的用户名,这里是 root 用户。
  • mysql-password:指定用于连接 MySQL 数据库的密码,这里为空,意味着没有设置密码(不推荐在生产环境中使用空密码)。
  • –mysql-port:指定 MySQL 服务器监听的端口,这里是默认的 3306 端口。
  • –mysql-host:指定 MySQL 服务器的主机地址,这里为空,表示连接本地数据库。
  • –oltp-tables-count:指定用于测试的表的数量,这里是 64 个表。
  • –oltp-table-size:指定每个表中的行数,这里是 10,000,000 行。表示每个表有一千万条记录。
  • –max-time:指定测试的最大持续时间为3600秒(1小时)。
  • –max-requests:指定要执行的最大请求数。值为0表示请求数不受限制,直到达到最大时间。
  • –num-threads:指定测试时使用的线程数,这里是 200 个线程。表示并发 200 个线程进行测试。
  • cleanup:测试完成后对数据库进行清理。

五、结果解析

以下为压测过程中打印的结果:

[ 3522s ] thds: 200 tps: 153.98 qps: 3119.87 (r/w/o: 2155.68/656.24/307.95) lat (ms,95%): 1235.62 err/s: 0.00 reconn/s: 0.00
[ 3525s ] thds: 200 tps: 157.36 qps: 2992.89 (r/w/o: 1997.37/680.79/314.72) lat (ms,95%): 4358.09 err/s: 0.00 reconn/s: 0.00
[ 3528s ] thds: 200 tps: 85.33 qps: 1852.86 (r/w/o: 1400.23/281.98/170.65) lat (ms,95%): 1258.08 err/s: 0.00 reconn/s: 0.00

测试结束后,查看输出文件,如下所示:

FATAL: The --max-time limit has expired, forcing shutdown...
SQL statistics:
    queries performed:
        read:                            5358024
        write:                           1530377
        other:                           765297
        total:                           7653698
    transactions:                        382581 (106.24 per sec.)
    queries:                             7653698 (2125.42 per sec.)
    ignored errors:                      0      (0.00 per sec.)
    reconnects:                          0      (0.00 per sec.)

Number of unfinished transactions on forced shutdown: 200

General statistics:
    total time:                          3601.0196s
    total number of events:              382581

Latency (ms):
         min:                                  4.72
         avg:                               1881.83
         max:                              10972.92
         95th percentile:                   4128.91
         sum:                            719951371.94

Threads fairness:
    events (avg/stddev):           1913.9050/24.88
    execution time (avg/stddev):   3599.7569/1.81

是不是有点晕,那我们稍微翻译下,如下所示:

FATAL: The --max-time limit has expired, forcing shutdown...
#SQL统计部分表明了总查询量以及每秒执行的查询和事务数量。这些数据有助于了解数据库的处理能力和性能表现。
SQL statistics(SQL统计信息):
    queries performed(查询执行情况):
        read(读查询):                          5358024
        write(写查询):                         1530377
        other(其它查询):                        765297
        total(总查询):                         7653698
    transactionss(事务):                        382581 (106.24 per sec.) (每秒106.24次)
    queries(查询):                             7653698 (2125.42 per sec.) (每秒2125.42次)
    ignored errors(忽略的错误):                      0      (0.00 per sec.) (每秒0次)
    reconnect(重连)s:                          0      (0.00 per sec.) (每秒0次)
    
# 强制关闭时未完成的事务数量为200,表明在测试过程中有200个事务未能完成,这可能与测试环境或配置有关。
Number of unfinished transactions on forced shutdown: 200

General statistics(一般统计信息):
    total time(总时间):                          3601.0196s
    total number of events(事件总数):              382581
    
#延迟数据展示了不同百分位的延迟情况,这些数据对分析数据库响应时间和性能瓶颈很有用。
Latency(延迟) (ms):
         min(最小延迟):                                  4.72
         avg(平均延迟):                               1881.83
         max(最大延迟):                              10972.92
         95th percentile(95%分位延迟):                4128.91
         sum(延迟总和):                          719951371.94
         
#线程公平性数据表明,每个线程处理的事件数的平均值和标准差,以及每个线程的执行时间的平均值和标准差。
Threads fairness(线程公平性):
    events (avg/stddev)(事件(平均值/标准差)):           1913.9050/24.88
    execution time (avg/stddev)(执行时间(平均值/标准差)):   3599.7569/1.81

这些数据展示了MySQL在高并发负载下的性能情况,主要关注点包括:

  • 查询和事务的执行率:每秒查询和事务数量表明了数据库的吞吐量。
  • 延迟:延迟数据(平均、最大和95%分位)显示了数据库的响应时间和性能瓶颈。
  • 未完成事务:强制关闭时未完成的事务数提示了潜在的事务处理问题。
  • 线程公平性:线程间的负载均衡情况,标准差较低表示负载分配较为均衡。

主要关注的性能指标有:

  • TPS :Transaction Per Second,数据库每秒执行的事务数,每个事务中包含18条SQL语句。
  • QPS :Query Per Second,数据库每秒执行的SQL数,包含insert、select、update、delete等。
  • 延迟:Latency,数据库执行的事务耗时。

Sysbench默认提交的事务中包含18条SQL语句,具体执行语句和条数如下:

主键SELECT语句,10条:
SELECT c FROM ​{rand_table_name} where id={rand_id};

范围SELECT语句,4条:
SELECT c FROM ​{rand_table_name} WHERE id BETWEEN {rand_id_start} AND ${rand_id_end};
SELECT SUM(K) FROM ​{rand_table_name} WHERE id BETWEEN {rand_id_start} AND ${rand_id_end};
SELECT c FROM ​{rand_table_name} WHERE id BETWEEN {rand_id_start} AND ${rand_id_end} ORDER BY c;
SELECT DISTINCT c FROM ​{rand_table_name} WHERE id BETWEEN {rand_id_start} AND ${rand_id_end} ORDER BY c;

UPDATE语句,2条:
UPDATE ​{rand_table_name} SET k=k+1 WHERE id={rand_id}
UPDATE ​{rand_table_name} SET c={rand_str} WHERE id=${rand_id}

DELETE语句,1条:
DELETE FROM ​{rand_table_name} WHERE id={rand_id}

INSERT语句,1条:
INSERT INTO ​{rand_table_name} (id, k, c, pad) VALUES ({rand_id},​{rand_k},{rand_str_c},${rand_str_pad})

这些结果可以用于性能调优和瓶颈分析,从而提升 MySQL 数据库在实际应用中的表现。

从Sysbench测试结果来看,这台MySQL服务器在高并发负载下的性能表现有以下几个关键点:

  • 事务处理能力:
    • 每秒事务数(TPS)为106.24次。
    • 总事务数为 382581。
  • 查询处理能力:
    • 每秒查询数(QPS)为 2125.42次。
    • 总查询数为 7653698。
  • 延迟:
    • 平均延迟为 1881.83 毫秒,较高,说明在负载压力下,响应时间比较长
    • 最大延迟为 10972.92 毫秒,非常高,表明在高负载下可能存在严重的性能瓶颈
    • 95% 分位延迟为 4128.91 毫秒,表示大多数请求的响应时间在 4 秒以上,体验较差
  • 未完成事务:
    • 强制关闭时未完成的事务数为 200,表明在高负载下有一部分事务未能及时处理完成。
  • 线程公平性:
    • 每个线程处理的事件数的标准差为 24.88,表明线程间的负载分配较为均衡。
    • 每个线程的执行时间的标准差为 1.81,表明线程执行时间也较为一致。

这里我们可以对比下某云的测试结果:
在这里插入图片描述

数据服务器资源监控数据:
在这里插入图片描述
我们可以看到CPU峰值到75%左右,磁盘峰值写入速率达50MB/s,峰值读取速率达 100MB/s。

六、最后

我们可以看到从测试结果的结果来看,MySQL数据库的性能表现并不好,那么我们接下来应对MySQL数据库进行性能调优并再次验证,希望本文能对你的工作带来一点点帮助,如果有用别忘了点个赞,多谢。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/732094.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python应用开发——30天学习Streamlit Python包进行APP的构建(7)

st.data_editor 显示数据编辑器 widget。 数据编辑器 widget 可让你在类似表格的用户界面中编辑数据框和许多其他数据结构。 警告 When going from st.experimental_data_editor to st.data_editor in 1.23.0, the data editors representation in st.session_state was ch…

展厅装修时候需要注意哪些细节

1、视觉方面 展厅应该具有很强的视觉冲击力。只有这样不论是领导视察还是合作的客户进行参观的时候才会对展厅产生浓厚的兴趣,同时产生一种亲和力,并直接加深对企业的识别度和记忆度。而个性化设计要跟企业文化相符合。这里,企业标志为寻求个…

Stable Diffusion vs DALL·E3

大模型技术论文不断,每个月总会新增上千篇。本专栏精选论文重点解读,主题还是围绕着行业实践和工程量产。若在某个环节出现卡点,可以回到大模型必备腔调或者LLM背后的基础模型新阅读。而最新科技(Mamba,xLSTM,KAN)则提…

六、(正点原子)pinctrl子系统和gpio子系统

前面我们使用设备树来驱动LED灯,其实就是将LED寄存器地址写入到设备树的属性reg中,通过OF函数 ,读取到LED灯的寄存器信息,从而操作寄存器来控制LED灯。在操作LED灯时候,我们使用到GPIO这个引脚,通过对这个G…

RabbitMQ实践——最大长度队列

大纲 抛弃消息创建最大长度队列绑定实验 转存死信创建死信队列创建可重写Routing key的最大长度队列创建绑定关系实验 在一些业务场景中,我们只需要保存最近的若干条消息,这个时候我们就可以使用“最大长度队列”来满足这个需求。该队列在收到消息后&…

leetCode40组合总和(回溯)

题目 给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用 一次示例 : 输入: candidates [2,5,2,1,2], target 5, 输出: [ [1,2,2], [5] ]回溯一般模…

3.XSS-DOM型(基础和进阶)

DOM XSS&#xff08;基础&#xff09; 不与后台服务器产生数据交互,通过前端的dom节点形成的XSS漏洞。 进行测试一下&#xff0c;输入111&#xff0c;会显示what do you see 查看元素代码&#xff0c;看到What do you see 根据前端页面语句进行编写弹窗攻击代码 <a hr…

# 消息中间件 RocketMQ 高级功能和源码分析(十)

消息中间件 RocketMQ 高级功能和源码分析&#xff08;十&#xff09; 一、消息中间件 RocketMQ 源码分析&#xff1a; 消息消费概述 1、集群模式和广播模式 消息消费以组的模式开展&#xff0c;一个消费组内可以包含多个消费者&#xff0c;每一个消费者组可订阅多个主题&…

萨科微slkor宋仕强论道华强北假货之六

萨科微slkor宋仕强论道华强北假货之六&#xff0c;华强北的假货这么多&#xff0c;搞得客户害怕、同行焦虑&#xff0c;话说“在华强北没有被坑过的&#xff0c;就不是华强北人”。我们金航标Kinghelm&#xff08;www.kinghelm.com.cn&#xff09;公司以前有一个贸易部&#xf…

【单片机】MSP430G2553单片机 Could not find MSP-FET430UIF on specified COM port 解决方案

文章目录 MSP430G2553开发板基础知识解决办法如何实施解决办法4步骤一步骤二步骤三 MSP430G2553开发板基础知识 MSP430G2553开发板如下图&#xff0c;上半部分就是UIF程序下载调试区域的硬件。个人觉得MSP430G2553开发板的这个部分没有做好硬件设计&#xff0c;导致很多系统兼…

三相光伏逆变并网电流电压双闭环仿真

三相并网发电系统的拓扑结构图展示了系统的基本构成和连接方式。图中&#xff0c;&#x1d456;&#x1d451;&#x1d450;1为直流输入电源&#xff0c;&#x1d436;1为输入直流母线滤波电容&#xff0c;&#x1d447;1~&#x1d447;6为三相逆变桥的6个IGBT开关管。这些开关…

MyBatis系列六: 映射关系多对一

动态SQL语句-更复杂的查询业务需求 官方文档基本介绍映射方式配置Mapper.xml的方式-应用实例注解的方式实现-应用实例课后练习 官方文档 文档地址: https://mybatis.org/mybatis-3/zh_CN/sqlmap-xml.html 基本介绍 ●基本介绍 1.项目中多对1的关系是一个基本的映射关系, 也可…

搜索python包的说明

当我发现bug时&#xff0c;就怀疑是sns包的版本问题了&#xff08;原代码是原作者以前成功运行的代码&#xff09;&#xff0c;于是直接到网上搜&#xff0c;找到对应的说明文档 根据该示例代码进行改写&#xff1a; 达成目的。

Harbor本地仓库搭建003_Harbor常见错误解决_以及各功能使用介绍_镜像推送和拉取---分布式云原生部署架构搭建003

首先我们去登录一下harbor,但是可以看到,用户名密码没有错,但是登录不上去 是因为,我们用了负债均衡,nginx会把,负载均衡进行,随机分配,访问的 是harbora,还是harborb机器. loadbalancer中 解决方案,去loadbalance那个机器中,然后 这里就是25机器,我们登录25机器 然后去配置…

【尚庭公寓SpringBoot + Vue 项目实战】预约看房与租约管理(完结)

【尚庭公寓SpringBoot Vue 项目实战】预约看房与租约管理&#xff08;完结&#xff09; 文章目录 【尚庭公寓SpringBoot Vue 项目实战】预约看房与租约管理&#xff08;完结&#xff09;1、业务说明2、接口开发2.1、预约看房管理2.1.1.保存或更新看房预约2.1.2. 查询个人预约…

首个AI高考全卷评测结果出分,大模型“考生”表现如何?

内容提要 大部分大模型“考生”语文、英语科目表现良好&#xff0c;但在数学方面还有待加强。阅卷老师点评&#xff0c;在语文科目上&#xff0c;对于语言中的一些“潜台词”&#xff0c;大模型尚无法完全理解。在数学科目上&#xff0c;大模型的主观题回答相对凌乱&#xff0…

2005年上半年软件设计师【下午题】试题及答案

文章目录 2005年上半年软件设计师下午题--试题2005年上半年软件设计师下午题--答案2005年上半年软件设计师下午题–试题

力扣每日一题 6/22 字符串/贪心

博客主页&#xff1a;誓则盟约系列专栏&#xff1a;IT竞赛 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 2663.字典序最小的美丽字符串【困难】 题目&#xff1a; 如果一个字符串满…

NLP大语言模型的缩放定律

一、简述 ​论文《神经语言模型的缩放定律》包含对交叉熵损失的语言模型性能的经验缩放定律的研究&#xff0c;重点关注Transformer架构。 https://arxiv.org/pdf/2001.08361.pdfhttps://arxiv.org/pdf/2001.08361.pdf 实验表明&#xff0c;测试损失与模型大小、数据集…

基于STM8系列单片机驱动74HC595驱动两个3位一体的数码管

1&#xff09;单片机/ARM硬件设计小知识&#xff0c;分享给将要学习或者正在学习单片机/ARM开发的同学。 2&#xff09;内容属于原创&#xff0c;若转载&#xff0c;请说明出处。 3&#xff09;提供相关问题有偿答疑和支持。 为了节省单片机MCU的IO口资源驱动6个数码管&…