MLP多层感知器:AI人工智能神经网络的基石

在这里插入图片描述

MLP 是指多层感知器(Multilayer Perceptron),是一种基础人工神经网络模型(ANN,Artificial Neural Network)。MLP 的核心是通过深度学习从大量数据中学习特征和模式,并训练参数。通过参数与激活函数的组合,MLP 能够拟合特征与目标之间的真实函数关系。简单来说,MLP 能够将信息逐层重新组合,每层重组的信息经过激活函数的放大或抑制后进入下一层的数据重组,从而实现特征提取和知识获取。

  • 单层神经元:单层神经网络可以逼近任意线性函数,类似于逻辑回归模型,适用于线性分类任务。
  • 两层神经元:两层神经网络可以逼近任意非线性函数,适用于复杂的非线性任务。
  • 多层神经元:多层神经网络可以逼近任意复杂函数,具有更强的函数模拟能力和更深层次的特征表示。

一、神经元模型

模拟生物神经元的数学抽象与计算单元。神经元模型是人工神经网络的基础构建块,是对生物神经系统中神经元行为的数学抽象。它模拟了生物神经元接收输入信号、整合信息并产生输出响应的过程。下面对神经元模型的各个组成部分及其功能进行详细阐述。

1、结构与符号表示

一个典型的人工神经元模型可以表示为:
在这里插入图片描述

其中:

  • 输入节点(Dendrites):接收来自其他神经元或外部环境的信号(特征值)。
  • 加权(Weighted Synapses):每个输入信号都乘以一个权重(w_i),表示该输入对神经元激活的重要性。
  • 求和(Summation):将加权后的输入信号累加在一起,形成净输入(net input)。
  • 激活函数(Activation Function):对净输入施加非线性变换,生成神经元的输出(activation)。
  • 输出节点(Axon):将激活值传递给其他神经元或作为网络的最终输出。

2、净输入计算

净输入(通常记为 (\mathbf{\sum_j w_j x_j}) 或 (z = \sum_j w_j x_j + b))是神经元所有输入信号经过加权后的总和,有时还包括一个偏置项 (b)。公式如下:

[ z = \sum_{j=1}^{n} w_j x_j + b ]

其中:

  • (x_j):第 (j) 个输入信号(特征值)。
  • (w_j):对应于 (x_j) 的权重。
  • (b):偏置项,对神经元的输出提供全局偏移,允许神经元在所有输入为零时仍能产生非零输出。
  • (n):输入信号的数量。

3、激活函数

激活函数是神经元模型的核心非线性组件,它将净输入映射到一个有限的输出范围内,引入非线性关系,使神经网络能够拟合复杂的数据分布。常见的激活函数包括:

  • Sigmoid: 输出范围(0, 1),平滑连续,但饱和区梯度接近于0,可能导致梯度消失问题。
  • ReLU (Rectified Linear Unit): 输出为(max(0, z)),仅对正值有响应,有效缓解梯度消失问题,但存在“死区”现象。
  • Tanh (Hyperbolic Tangent): 输出范围(-1, 1),双侧饱和,但饱和区梯度较sigmoid好。
  • Leaky ReLUParametric ReLU (PReLU): 改进ReLU,对负值提供小的非零斜率,减少“死区”影响。
  • ELU (Exponential Linear Unit): 类似Leaky ReLU,但饱和区输出更平滑,有利于梯度传播。

激活函数的选择对于神经网络的性能至关重要,需要根据具体任务和网络结构进行权衡。

4、神经元输出

神经元的输出 (a) 是对其净输入 (z) 应用激活函数 (f(z)) 后的结果:

[ a = f(z) = f\left(\sum_{j=1}^{n} w_j x_j + b\right) ]

此输出随后被传递给其他神经元(作为下一层的输入)或作为整个神经网络的最终输出(如在输出层)。

5、学习过程

在训练神经网络时,通过反向传播算法更新神经元的权重 (w_j) 和偏置 (b),以最小化网络的预测误差(即损失函数)。这个过程涉及计算梯度((\frac{\partial L}{\partial w_j}) 和 (\frac{\partial L}{\partial b})),然后使用优化算法(如梯度下降、Adam等)更新权重和偏置。

综上所述,神经元模型通过对生物神经元行为的抽象,实现了输入信号的加权整合、非线性转换及输出生成,是构成复杂神经网络的基本单元。其内部参数的学习与调整,使得神经网络能够在各种机器学习任务中进行高效的学习与泛化。

二、单层神经网络

单层神经网络是最简单形式的人工神经网络,由输入层和输出层直接相连组成,没有中间的隐藏层。尽管其结构简单,单层神经网络在特定问题上仍具有一定的学习与分类能力。以下是单层神经网络的详细解释:

1、结构

在这里插入图片描述

输入层 (Input Layer): 包含若干个输入神经元,每个神经元对应输入数据的一个特征或维度。输入层仅负责接收外部数据并将其传递给后续层,不做任何计算。

输出层 (Output Layer): 包含一个或多个输出神经元,每个神经元代表一个预测目标(如分类标签)或回归值。输出层神经元接收输入层传递过来的加权信号,并通过激活函数生成最终的网络输出。

全连接 (Fully Connected): 在单层神经网络中,输入层的所有神经元与输出层的所有神经元之间形成全连接关系,即每个输入神经元与每个输出神经元之间都有一个权重 (w_{ij}),表示从输入 (i) 到输出 (j) 的连接强度。

2、工作原理

前向传播 (Forward Propagation): 当给定一组输入数据时,单层神经网络的处理流程如下:

  • 加权输入:每个输入特征 (x_i) 乘以其对应的权重 (w_{ij}),形成对输出神经元 (j) 的加权输入。

  • 净输入计算:将所有输入特征对输出神经元 (j) 的加权输入求和,并加上偏置项 (b_j),得到该输出神经元的净输入 (z_j):

    [ z_j = \sum_{i=1}^{m} w_{ij} x_i + b_j ]

    其中 (m) 是输入特征的数量。

  • 激活函数:对净输入 (z_j) 应用激活函数 (f(z_j)),生成输出神经元 (j) 的激活值 (a_j):

    [ a_j = f(z_j) ]

    激活函数赋予网络非线性处理能力,如 Sigmoid、ReLU 等。

学习与权重更新:单层神经网络通常用于监督学习任务,通过反向传播算法和梯度下降法来更新权重 (w_{ij}) 和偏置 (b_j),以减小预测输出与实际目标之间的差异(即损失函数)。在每次迭代过程中:

  • 计算损失函数关于权重和偏置的梯度。

  • 使用梯度更新规则更新权重和偏置:

    [ w_{ij} \leftarrow w_{ij} - \alpha \frac{\partial L}{\partial w_{ij}} ]
    [ b_j \leftarrow b_j - \alpha \frac{\partial L}{\partial b_j} ]

    其中 (\alpha) 是学习率,控制每次更新的幅度。

3、特点与局限性

特点:

  • 简单易用:单层神经网络结构清晰,易于理解和实现。
  • 线性分类与回归:由于没有隐藏层,单层神经网络本质上是一个线性模型,适合处理线性可分问题或简单的线性回归任务。
  • 快速训练:相对于多层神经网络,单层网络的训练时间短,资源需求低。

局限性:

  • 非线性问题处理能力有限:由于缺乏隐藏层和非线性组合,单层神经网络无法有效捕捉复杂的数据分布或非线性关系,难以解决非线性可分问题。
  • 表示能力不足:对于高维数据或需要复杂特征交互的任务,单层神经网络的表达能力有限,可能无法达到理想的泛化效果。
  • 异或问题:经典的异或(XOR)问题是单层神经网络无法解决的典型例子,因为它要求模型具备非线性决策边界。

4、应用

尽管单层神经网络在处理复杂问题时存在局限性,但在一些特定场景下仍有应用价值:

  • 简单分类与回归:对数据分布简单、线性关系明显的任务,如简单的二分类问题或线性回归分析。
  • 预处理或特征提取后的后续处理:在进行初步的特征工程或非线性特征提取后,可以用单层神经网络进行后续的线性分类或回归。
  • 教学与入门:作为深度学习基础模型,单层神经网络常用于教学目的,帮助初学者理解神经网络的基本原理和工作流程。

总的来说,单层神经网络作为一种基础的机器学习模型,适用于处理线性可分或简单线性关系的问题,但对于复杂的非线性任务,往往需要扩展到多层神经网络(如多层感知器,MLP)或更先进的深度学习架构。

三、多层神经网络

多层神经网络是指包含两个或以上隐藏层的前馈神经网络(Feedforward Neural Network),它是深度学习的核心组成部分之一,能有效地学习和表示复杂的数据分布和非线性关系。以下是多层神经网络的详细解析:

1、结构

在这里插入图片描述

输入层 (Input Layer): 同样作为网络的起点,包含多个神经元,每个神经元接收一个输入特征,共同构成输入向量。

隐藏层 (Hidden Layers): 多层神经网络的核心部分,包括一个或多个隐藏层。每一层都包含一定数量的隐藏神经元。各层之间全连接,即每个神经元与其下一层的所有神经元都有连接。隐藏层通过非线性激活函数对前一层的输出进行变换,生成新的特征表示。

输出层 (Output Layer): 最后一层,根据任务需求(如分类、回归等)设计相应数量和类型的神经元,并应用适当的激活函数生成最终输出。

全连接 (Fully Connected): 每一层的神经元与下一层的所有神经元之间均有独立的权重 (w_{ij}) 连接,权重决定了信号在神经元间的传递强度。

2、工作原理

前向传播 (Forward Propagation):

  • 输入到第一隐藏层:与两层神经网络相似,输入特征经过权重与偏置运算,经激活函数得到第一隐藏层的激活值。

  • 隐藏层间传递:对于后续的隐藏层,每一层的激活值作为下一层的输入,重复上述过程。即:

    [ z^{(l)}j = \sum{i=1}{n{(l-1)}} w^{(l)}_{ji} a^{(l-1)}_i + b^{(l)}_j ]
    [ a^{(l)}_j = f{(l)}(z{(l)}_j) ]

    其中,(z^{(l)}_j) 表示第 (l) 层第 (j) 个神经元的净输入,(a^{(l)}j) 是其激活值,(n^{(l-1)}) 是前一层神经元数量,(w^{(l)}{ji}) 和 (b^{(l)}_j) 分别是权重和偏置,(f^{(l)}) 是第 (l) 层的激活函数。

  • 最后一层到输出:最后一个隐藏层的激活值通过权重和偏置传递到输出层,应用输出层激活函数得到最终输出。

学习与权重更新:多层神经网络采用反向传播算法结合梯度下降法或其他优化算法更新所有权重和偏置。反向传播从输出层开始,逐层计算损失函数相对于各层权重和偏置的梯度,然后沿相反方向传播这些梯度,直至输入层,完成一次迭代更新:

  • 反向传播:从输出层开始,计算损失函数对输出层权重和偏置的梯度,然后递归地计算每层隐藏层的权重和偏置梯度。

  • 权重更新:根据计算出的梯度和选定的学习率 (\alpha) 更新所有权重和偏置:

    [ w^{(l)}{ji} \leftarrow w^{(l)}{ji} - \alpha \frac{\partial L}{\partial w^{(l)}_{ji}} ]
    [ b^{(l)}_j \leftarrow b^{(l)}_j - \alpha \frac{\partial L}{\partial b^{(l)}_j} ]

3、特点与优势

特点:

  • 深度非线性表示:多层隐藏层叠加,使得网络能够学习极其复杂的非线性映射,表征深层次的抽象特征和数据间的复杂依赖关系。
  • 层次抽象:每一层隐藏层可以看作是对输入数据的逐步抽象和转换,高层隐藏层通常捕获更高级、更抽象的特征。
  • 模型容量:随着层数和神经元数量的增加,网络的模型容量(即拟合复杂函数的能力)显著增强。

优势:

  • 处理复杂任务:适用于高度非线性、高维、关联性强的复杂数据集,如图像识别、语音识别、自然语言处理等。
  • 特征学习:自动从原始数据中学习有用的特征表示,无需人工特征工程。
  • 泛化能力:在大量数据和适当正则化条件下,多层神经网络能够学习到对未见过数据的良好泛化模型。

4、激活函数

常见的激活函数包括:

  • ReLU (Rectified Linear Unit):(f(x) = max(0, x)),在正区间内保持线性,有效缓解梯度消失问题,加速训练。
  • sigmoidtanh:连续的S形曲线,输出范围分别为(0, 1)和(-1, 1),常用于二分类和多分类问题的输出层。
  • Leaky ReLUELU (Exponential Linear Unit) 等变种,旨在改善ReLU的“死区”问题。
  • Softmax:用于多分类问题的输出层,将神经元的输出转化为概率分布。

5、正则化与优化

为了防止过拟合和提高模型泛化能力,多层神经网络常采用以下技术:

  • L1/L2正则化:在损失函数中加入权重矩阵的L1范数或L2范数,鼓励权重稀疏或平滑。
  • Dropout:训练过程中随机丢弃部分隐藏层神经元,降低神经元间的依赖,防止过拟合。
  • Batch Normalization:对每层神经元的输入进行标准化,加速训练,提高模型稳定性。

在优化方面,除了基本的梯度下降法,还常用以下算法:

  • MomentumNesterov Accelerated Gradient (NAG):引入动量项,加速收敛,减少震荡。
  • AdagradRMSpropAdam 等自适应学习率方法:动态调整各个参数的学习率,适应不同的梯度规模。

6、应用

多层神经网络广泛应用于各种机器学习任务:

  • 计算机视觉:图像分类、物体检测、语义分割、图像生成等。
  • 自然语言处理:文本分类、情感分析、机器翻译、问答系统、语音识别等。
  • 生物信息学:基因序列分析、蛋白质结构预测、疾病诊断等。
  • 推荐系统:用户行为建模、物品嵌入、协同过滤等。
  • 强化学习:环境状态编码、策略网络、价值函数估计等。

总结而言,多层神经网络通过堆叠多个隐藏层,利用非线性激活函数构建深度非线性模型,能够学习复杂的数据分布和表示,解决诸多机器学习和人工智能领域的挑战性任务。其强大的表示能力和适应性使其成为现代深度学习架构的基础。

基于神经网络深度学习思想将深远的影响着全人类!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/731925.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java——IO流(一)-(6/8):字节流-FileInputStream 每次读取多个字节(示例演示)、一次读取完全部字节(方式一、方式二,注意事项)

目录 文件字节输入流:每次读取多个字节 实例演示 注意事项 文件字节输入流:一次读取完全部字节 方式一 方式二 注意事项 文件字节输入流:每次读取多个字节 用到之前介绍过的常用方法: 实例演示 需求:用每次读取…

Star、Star求Star

本章是介绍博主自己的一个小工具的。使用的PythonPyQt5开发的。顺带来求一波star🌟🌟!!! 地址:https://gitee.com/qinganan_admin/PyCom Pycom是博主开发的串口工具,要是说对比其他串口工具&…

异步复位同步释放

目录 描述 输入描述: 输出描述: 参考代码 描述 题目描述: 请使用异步复位同步释放来将输入数据a存储到寄存器中,并画图说明异步复位同步释放的机制原理 信号示意图: clk为时钟 rst_n为低电平复位 d信号输入…

为何人类需重复学习与记忆?人工智能与人类认知机制的融合 —— 生物体AI

零、 AI 与人的认知背景知识 人作为一种生物智能体,学习和记忆的过程往往需要重复与实践。这是因为人的大脑并非一次性就能完美地吸收和储存信息,而是通过反复的认知加工,将短期记忆转化为长期记忆,并通过深度理解、归纳总结以及…

【GUI】LVGL无操作系统移植以及移植过程错误处理

目录 介绍 1. 删除源码 2. 导入lvgl到项目screen_mcu中 3. keil添加分组和头文件 4. 移植显示 5. 移植触摸 6. 添加测试案例 6.1. 测试按钮 6.2. 测试音乐界面 7. 提供时钟 错误处理 L6218E错误 出现花屏 屏幕颜色不对 内存分配 介绍 本文 主要介绍GD32移植…

qt经典界面框架

目的 其实就是一个简单的界面显示,是很常用的形式。 说起来简单也是简单,但当初,刚开始做时,感觉非常的复杂,不知如何下手。 现在感觉简单多了。 这个框架利用了QT的现成的MainWindow与QDockWidget,这样就…

福建聚鼎:装饰画现在做起来难吗

在当代社会,艺术创作已经成为很多人表达自我、追求美学生活的方式之一。装饰画作为家居装饰的重要元素,也受到了越来越多人的喜爱。但做一个优质的装饰画真的容易吗? 从技术层面讲,随着科技的发展,制作装饰画的手段和材料都比以往…

Python基础教程(二十八):pip模块

💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 💝&#x1f49…

NUC980-OLED实现全中文字库的方法

1.背景 有一个产品,客户需要屏幕展示一些内容,要带一些中文,实现了OLED12864的驱动,但是它不带字库,现在要实现OLED全字库的显示 2.制作原始字库 下载软件pctolcd2002 设置 制作字库 打开原始文件 用软件自带的&…

Linux常用命令(14)—查看文件内容(有相关截图)

写在前面: 最近在学习Linux命令,记录一下学习Linux常用命令的过程,方便以后复习。仅供参考,若有不当的地方,恳请指正。如果对你有帮助,欢迎点赞,关注,收藏,评论&#xf…

12.爬虫---PyMysql安装与使用

12.PyMysql安装与使用 1.安装 PyMySQL2.使用PyMySQL2.1创建数据表2.2连接数据库2.3增加数据2.4修改数据2.5查询数据2.6删除数据2.7关闭连接 3.总结 MySQL 安装可以看这篇文章MySql 安装与使用(非常详细) 1.安装 PyMySQL PyMySQL是Python中用于连接MySQL…

【linux】shell脚本中设置字体颜色,背景颜色详细攻略

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全…

解决vmware “处理器不支持 XSAVE。无法打开此虚拟机的电源。“

1,打开windows 10-11 的 虚拟机平台 选择 “开始”,输入“Windows 功能”,然后从结果列表中选择“打开或关闭 Windows 功能 ”。 在刚刚打开的 “Windows 功能”窗口中,找到“虚拟机平台 ”并将其选中。 选择“确定”。 可能需要重启电脑。…

【干货】微信小程序免费开源项目合集

前言 2024年了,还有小伙伴在问微信小程序要怎么开发,有什么好的推荐学习项目可以参考的。今天分享一个收集了一系列在微信小程序开发中有用的工具、库、插件和资源:awesome-github-wechat-weapp。 开源项目介绍 它提供了丰富的资源列表&…

华为DCN技术:M-LAG

M-LAG(Multichassis Link Aggregation Group)即跨设备链路聚合组,是一种实现跨设备链路聚合的机制。M-LAG主要应用于普通以太网络、VXLAN和IP网络的双归接入,可以起到负载分担或备份保护的作用。相较于另一种常见的可靠性接入技术…

[C++][数据结构][B-树][下]详细讲解

目录 1.B-树的实现1.B-树的结点设计2.插入key的过程3.B-树的插入实现4.B-树的简单验证5.B-树的性能分析6.B树的删除 2.B树3.B*树4.B-树总结5.B-树的应用0.B树可以在内存中做内查找吗?1.索引2.MYSQL索引简介1.MyISAM2.InnoDB 3.B树做主键索引相比B树的优势 1.B-树的实…

10.2 JavaEE——Spring MVC入门程序

要求在浏览器发起请求,由Spring MVC接收请求并响应,具体实现步骤如下。 一、创建项目 在IDEA中,创建一个名称为chapter10的Maven Web项目。 (一)手动设置webapp文件夹 1、单击IDEA工具栏中的File→“Project Structu…

如何用GO语言实现冒泡排序算法?

本章教程,介绍一下如何用GO语言实现基础排序算法中的冒泡排序。 一、程序代码 package mainimport ("fmt""math/rand""time" )// bubbleSort 函数实现冒泡排序算法 func bubbleSort(arr []int) {n

电脑文件夹怎么加密?文件夹加密的5种方法

在数字化时代,信息安全显得尤为重要。对于个人电脑用户来说,文件夹加密是一种有效保护隐私和数据安全的方法。本文将介绍五种文件夹加密的方法,帮助您更好地保护自己的重要文件。 如何设置文件夹密码方法一:利用Windows系统自带的…

不懂就问,开通小程序地理位置接口有那么难吗?

小程序地理位置接口有什么功能? 若提审后被驳回,理由是“当前提审小程序代码包中地理位置相关接口( chooseAddress、getLocation )暂未开通,建议完成接口开通后或移除接口相关内容后再进行后续版本提审”,那么遇到这种情况&#x…