Python爬虫:单线程、多线程、多进程

在这里插入图片描述

前言

在使用爬虫爬取数据的时候,当需要爬取的数据量比较大,且急需很快获取到数据的时候,可以考虑将单线程的爬虫写成多线程的爬虫。下面来学习一些它的基础知识和代码编写方法。

一、进程和线程

进程可以理解为是正在运行的程序的实例。进程是拥有资源的独立单位,而线程不是独立的单位。由于每一次调度进程的开销比较大,为此才引入的线程。一个进程可以拥有多个线程,一个进程中可以同时存在多个线程,这些线程共享该进程的资源,线程的切换消耗是很小的。因此在操作系统中引入进程的目的是更好地使多道程序并发执行,提高资源利用率和系统吞吐量;而引入线程的目的则是减小程序在并发执行时所付出的时空开销,提高操作系统的并发性能。
下面用简单的例子进行描述,打开本地计算机的”任务管理器”如图1所示,这些正在运行的程序叫作进程。如果将一个进程比喻成一个工作,指定10个人来做这份工作,这10个人就是10个线程。因此,在一定的范围内,多线程效率比单线程效率更高。
在这里插入图片描述
图1.任务管理器

二、Python中的多线程与单线程

在我们平时学习的过程中,使用的主要是单线程爬虫。一般来说,如果爬取的资源不是特别大,使用单线程即可。在Python中,默认情况下是单线程的,简单理解为:代码是按顺序依次运行的,比如先运行第一行代码,再运行第二行,依次类推。在前面章节所学习知识中,都是以单线程的形式实践的。
举个例子,批量下载某网站的图片,由于下载图片是一个耗时的操作,如果依然采用单线程的方式下载,那么效率就会特别低,意味着需要消耗更多的时间等待下载。为了节约时间,这时候我们就可以考虑使用多线程的方式来下载图片。
threading模块是Python中专门用来做多线程编程的模块,它对thread进行了封装,使用更加方便。例如需要对写代码和玩游戏两个事件使用多线程进行,案例代码如下。

import threading
import time
# 定义第一个
def coding():
    for x in range(3):
        print('%s正在写代码\n' % x)
        time.sleep(1)
# 定义第二个
def playing():
    for x in range(3):
        print('%s正在玩游戏\n' % x)
        time.sleep(1)
# 如果使用多线程执行
def multi_thread():
    start = time.time()
    #  Thread创建第一个线程,target参数为函数命
    t1 = threading.Thread(target=coding)
    t1.start()  # 启动线程
    # 创建第二个线程
    t2 = threading.Thread(target=playing)
    t2.start()
    # join是确保thread子线程执行完毕后才能执行下一个线程
    t1.join()
    t2.join()
    end = time.time()
    running_time = end - start  
    print('总共运行时间 : %.5f 秒' % running_time)
# 执行
if __name__ == '__main__':
    multi_thread()  # 执行单线程

运行结果如图2所示:
图2.多线程运行结果
图2.多线程运行结果
那么执行单线程会消耗多少时间,案例代码如下所示。

import time
# 定义第一个
def coding():
    for x in range(3):
        print('%s正在写代码\n' % x)
        time.sleep(1)
# 定义第二个
def playing():
    start = time.time()
    for x in range(3):
        print('%s正在玩游戏\n' % x)
        time.sleep(1)
    end = time.time()
    running_time = end - start
    print('总共运行时间 : %.5f 秒' % running_time)
def single_thread():
    coding()
    playing()
# 执行
if __name__ == '__main__':
    single_thread()  # 执行单线程

运行结果如图3所示:
在这里插入图片描述
图3.单线程运行结果
经过以上多线程和单线程的运行结果,可以看出多线程中写代码和玩游戏是一起执行的,单线程中则是先写代码再玩游戏。从时间上来说,可能只有细微的差距,当执行工作量很大的时候,便会发现多线程消耗的时间会更少,从这个案例中我们也可以知道,当所需要执行的任务并不多的时候,只需要编写单线程即可。

三、单线程改为多线程

以某直播的图片爬取为例,案例代码如下:

import requests
from lxml import etree
import time
import os

dirpath = '图片/'
if not os.path.exists(dirpath):
    os.mkdir(dirpath)  # 创建文件夹

header = {
    'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.162 Safari/537.36'
}
def get_photo():
    url = 'https://www.huya.com/g/4079/'  # 目标网站
    response = requests.get(url=url, headers=header)  # 发送请求
    data = etree.HTML(response.text)  # 转化为html格式
    return data

def jiexi():
    data = get_photo()
    image_url = data.xpath('//a//img//@data-original')
    image_name = data.xpath('//a//img[@class="pic"]//@alt')
    for ur, name in zip(image_url, image_name):
        url = ur.replace('?imageview/4/0/w/338/h/190/blur/1', '')
        title = name + '.jpg'
        response = requests.get(url=url, headers=header)  # 在此发送新的请求
        with open(dirpath + title, 'wb') as f:
            f.write(response.content)
        print("下载成功" + name)
        time.sleep(2)

if __name__ == '__main__':
        jiexi()

如果需要修改为多线程爬虫,只需要修改主函数即可,例如创建4个线程进行爬取,案例代码如下所示:

if __name__ == "__main__":
    threads = []
    start = time.time()
    # 创建四个进程
    for i in range(1, 5):
        thread = threading.Thread(target=jiexi(), args=(i,))
        threads.append(thread)
        thread.start()
    for thread in threads:
        thread.join()
    end = time.time()
    running_time = end - start
    print('总共消耗时间 : %.5f 秒' % running_time)
    print("全部完成!")  # 主程序

四、图书推荐

在这里插入图片描述

本书介绍了Python3网络爬虫的常见技术。首先介绍了网页的基础知识,然后介绍了urllib、Requests请求库以及XPath、Beautiful Soup等解析库,接着介绍了selenium对动态网站的爬取和Scrapy爬虫框架,最后介绍了Linux基础,便于读者自主部署编写好的爬虫脚本。
本书主要面向对网络爬虫感兴趣的初学者。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/73165.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

jvs-rules API数据源配置说明(含配置APIdemo视频)

在JVS中,多数据源支持多种形态的数据接入,其中API是企业生产过程中常见的数据形态。使用数据源的集成配置,以统一的方式管理和集成多个API的数据。这些平台通常提供各种数据转换和处理功能,使得从不同数据源获取和处理数据变得更加…

搭建一个能与大家分享的旅游相册网站——“cpolar内网穿透”

如何用piwigo与cpolar结合共同搭建一个能分享的旅行相册网站 文章目录 如何用piwigo与cpolar结合共同搭建一个能分享的旅行相册网站前言1. 使用piwigo这款开源的图片管理软件2. 需要将piwigi网页复制到phpstudy3. “开始安装”进入自动安装程序4. 创建新相册5. 创建一条空白数据…

Spring Gateway+Security+OAuth2+RBAC 实现SSO统一认证平台

背景:新项目准备用SSO来整合之前多个项目的登录和权限,同时引入网关来做后续的服务限流之类的操作,所以搭建了下面这个系统雏形。 关键词:Spring Gateway, Spring Security, JWT, OAuth2, Nacos, Redis, Danymic datasource, Jav…

ansible剧本之role角色模块

role角色 一:Roles 模块1.roles 的目录结构:2.roles 内各目录含义解释3.在一个 playbook 中使用 roles 的步骤:(1)创建以 roles 命名的目录(2)创建全局变量目录(可选)&am…

Java进阶-Oracle(二十一)(2)

🌻🌻 目录 一、Oracle 数据库的操作(DDL DML DQL DCL TPL)1.1 标识符、关键字、函数等1.1.1 数值类型:1.1.2 字符串类型:1.1.3 日期类型1.1.4 大的数据类型--适合保存更多的数据 1.2 运算符1.3 函数---预定义函数、自定义函数&…

户外组网摆脱布线困扰,工业5G网关实现无人值守、远程实时监控

在物联网通信技术发达的2023,网络覆盖对所及之处的全面覆盖,科技发展的促使下很多高危户外场景也在思考如何利用无线技术提高人员安全及现场无人化管理。 煤矿是我们国家不可缺少的重要能源,其开采过程的危险系数也是众所皆知的,…

【Linux】线程的概念以及与进程的区别

目录 背景知识 什么是线程? 进程和线程的区别 线程的优缺点 背景知识 在了解线程前,我们要首先知道,OS是可以做到让进程进行细粒度划分的! 比如我们所说的进程地址空间中的堆区,它在进程PCB中的mm_structz中有一个start和…

深度学习关键要素:数据集汇总与分享

引言 在深度学习的应用中,数据被认为是最重要的因素之一。因此,选择一个好的数据集对于深度学习的成功至关重要。在选择数据集时,不仅需要关注数据量的大小、多样性以及质量,还要考虑数据集是否代表了所研究问题的真实情况。本文…

SpringBoot对接OpenAI

SpringBoot对接OpenAI 随着人工智能技术的飞速发展,越来越多的开发者希望将智能功能集成到自己的应用中,以提升用户体验和应用的功能。OpenAI作为一家领先的人工智能公司,提供了许多先进的自然语言处理和语言生成模型,其中包括深…

IDEA 设置字体大小无效

设置字体大小,一般都是从file>settings>editor>font>Size里设置,一般都有效。 但是,如果是更换了主体,则需要从主体颜色菜单那里这是,你看这个页面,上面黄色三角也提示你了,要去颜色…

5.内置构造函数

在JavaScript中最主要的数据类型有6种: 1.基本数据类型: 字符串、数值、布尔、undefined、 null 2.引用类型:对象 但是,我们会发现有些特殊情况: //普通字符串 const str andy console.1og(str.length) // 4其实字符串、数值、布尔、等基本类型也都有…

易服客工作室:WordPress 6.3 Lionel发布

WordPress 6.3 Lionel已经发布,它以美国著名爵士乐艺术家莱昂内尔汉普顿 (Lionel Hampton)的名字命名。汉普顿是一位多产的爵士颤音琴演奏家、钢琴家和打击乐演奏家,因与查尔斯明格斯、昆西琼斯等伟大人物合作以及作为同名莱昂内尔汉普顿管弦乐团的乐队领…

【ARM Cache 系列文章 9 -- ARM big.LITTLE技术】

文章目录 big.LITTLE 技术背景big.LITTLE 技术详解big.LITTLE 硬件要求 big.LITTLE 软件模型CPU MigrationGlobal Task SchedulingGlobal Task Scheduling比CPU Migration的优势 转自:https://zhuanlan.zhihu.com/p/630981648 如有侵权,请联系删除 big.L…

C++ 字符串类 string

文章目录 前言一、string 类型概括二、字符串流总结 前言 在C中,字符串是一种常见的数据类型,用于存储和操作文本数据。C标准库中提供了std::string类,它是一个功能强大的字符串类,提供了丰富的方法和操作符,使我们能…

香港大学余涛组推出开源XLANG Agent!支持三种Agent模式

作者 |小戏、ZenMoore 一个新的未来又逐渐开始从理论走向现实走到我们身边了。 语言的意义在于使用,而从 ChatGPT 以来这些大规模语言模型的意义,也必然绝不止于 Chat,在四个月前,我们介绍了清华大学关于工具学习的综述《清华发布…

2021年06月 C/C++(一级)真题解析#中国电子学会#全国青少年软件编程等级考试

第1题:数的输入和输出 输入一个整数和双精度浮点数,先将浮点数保留2位小数输出,然后输出整数。 时间限制:1000 内存限制:65536 输入 一行两个数,分别为整数N(不超过整型范围),双精度浮点数F,以一个空格分开。 输出 一行两个数,分别为保留2位小数输出的F,以及整数N,以…

【数学建模】--主成分分析

本讲将介绍主成分分析(Principal Component Analysis,PCA),主成分分析是一种降维算法,它能将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,其能…

【Linux的开胃小菜】常用的RPM软件包与YUM仓库包管理器使用

一、系统初始化进程 systemd与System V init的区别以及作用: System V init运行级别systemd目标名称systemd目标作用0poweroff.target关机1rescue.target单用户模式2multi-user.target多用户的文本界面3multi-user.target多用户的文本界面4multi-user.target多用户…

FiboSearch Pro – Ajax Search for WooCommerce 商城AJAX实时搜索插件

FiboSearch Pro是最受欢迎的WooCommerce 产品搜索插件。它为您的用户提供精心设计的高级 AJAX 搜索栏,并提供实时搜索建议。默认情况下,WooCommerce 提供非常简单的搜索解决方案,没有实时产品搜索,甚至没有 SKU 搜索。FiboSearch&…

DAY21

题目一 给定三个字符串str1、str2和aim, 如果aim包含且仅包含来自str1和str2的所有字符,而且在aim中属于str1的字符 之间保持原来在str1中的顺序,属于str2的字符之间保持原来在str2中的顺序,那么称aim是str1和str2的交错组成。实…