资源下载: https://download.csdn.net/download/vvoennvv/89466423
分类算法资源合集:https://download.csdn.net/download/vvoennvv/89466519
目录
Matlab SVM支持向量机分类算法
Matlab RF随机森林分类算法
Matlab RBF径向基神经网络分类算法
Matlab PSO-BP 基于粒子群算法优化BP神经网络的分类算法
Matlab LSTM长短期记忆神经网络分类算法
Matlab GA-BP 基于遗传算法优化BP神经网络的分类算法
Matlab ELM极限学习机分类算法
Matlab CNN卷积神经网络分类算法
Matlab BP神经网络分类算法
Matlab CNN-LSTM分类 卷积神经网络-长短期记忆神经网络组合模型
一,概述
BP 神经网络是一种常见的人工神经网络,也是一种有监督学习的神经网络。其全称为“Back Propagation”,即反向传播算法。BP 神经网络主要由输入层、隐藏层和输出层组成,每一层都由多个神经元组成。BP 神经网络的学习过程是通过不断地调整权值和偏置值来逐步提高网络的精度。 BP 神经网络的训练过程可以分为两个阶段:前向传播和反向传播。在前向传播中,输入信号通过各层的神经元,最终产生输出结果。在反向传播中,输出结果与预期结果的误差被反向传播回网络中,根据误差大小调整各层神经元的权值和偏置值,使得误差逐步减小,从而提高网络的精度。BP 神经网络的优点是可以处理非线性问题,可以进行并行计算,并且能够自适应地学习和调整权值和偏置值。
二,代码
代码中文注释非常清晰,按照示例数据修改格式,替换数据集即可运行,数据集为excel。
部分代码如下:
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 分析数据
num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别)
num_res = size(res, 1); % 样本数(每一行,是一个样本)
num_size = 0.7; % 训练集占数据集的比例
res = res(randperm(num_res), :); % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1; % 标志位为1,打开混淆矩阵(要求2018版本及以上)
%% 设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];
%% 划分数据集
for i = 1 : num_class
mid_res = res((res(:, end) == i), :); % 循环取出不同类别的样本
mid_size = size(mid_res, 1); % 得到不同类别样本个数
mid_tiran = round(num_size * mid_size); % 得到该类别的训练样本个数
P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)]; % 训练集输入
T_train = [T_train; mid_res(1: mid_tiran, end)]; % 训练集输出
P_test = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)]; % 测试集输入
T_test = [T_test; mid_res(mid_tiran + 1: end, end)]; % 测试集输出
end
%% 数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';
%% 得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
......
三,运行结果
资源下载: https://download.csdn.net/download/vvoennvv/89466423