车辆轨迹预测系列 (二):常见数据集介绍

车辆轨迹预测系列 (二):常见数据集介绍

文章目录

  • 车辆轨迹预测系列 (二):常见数据集介绍
      • 1、NuScenes (2020):
        • 1、下载
        • 2、说明
      • 2、Waymo Open Dataset (2020):
        • 1、介绍
        • 2、概述
        • 3、下载
        • 4、教程
        • 5、参考
      • 3、Lyft Level 5 (2020):
        • 1、官方
        • 2、数据集
        • 3、备注
      • 4、Argoverse (2019):
        • 1、数据下载
        • 2、参考
      • 5、INTERACTION (2019):
        • 1、数据请求
      • 6、HighD (2018):
        • 1、介绍
        • 2、数据请求
      • 7、Apolloscape (2018):
        • 1、数据下载
        • 2、数据请求
      • 8、KITTI (2013):
        • 1、轨迹检测
        • 2、数据集下载
      • 9、NGSIM (2006):
        • 1、数据下载

image-20240621113630003

  1. Dataset:数据集名称及参考文献编号。
  2. Year:数据集发布的年份。
  3. Agents:数据集中涉及的代理对象,包括行人(pedestrians)、骑行者(cyclists)和车辆(vehicles)。
  4. Sensors:数据集中使用的传感器类型,包括激光雷达(lidar)、摄像头(camera)和无人机(drone)。
  5. Scene:数据采集的场景类型,包括城市(urban)和高速公路(highway)。
  6. Duration and tracking quantity:数据集的持续时间和跟踪数据的数量。包括驾驶场景的数量、数据时长、车辆数量等。
  7. Data type:数据的类型,包括轨迹(trajectories)、高清地图(HD map)、图像(image)、点云(point cloud)等。
  8. Typical methods:针对该数据集常用的典型方法或模型。

详细分析

1、NuScenes (2020):

  • Agents:行人、骑行者、车辆
  • Sensors:激光雷达、摄像头
  • Scene:城市
  • Duration and tracking quantity:1000个驾驶场景
  • Data type:轨迹、高清地图
  • Typical methods:MHA-JAM, Trajectron++
  • Download Link: nuScenes Dataset
  • Paper Link:https://arxiv.org/abs/1903.11027 nuScenes: A multimodal dataset for autonomous driving

优点:

  • 多模态数据:包括雷达、激光雷达(LiDAR)、摄像头和GPS数据。
  • 高质量标注:详细的目标检测和跟踪,包含场景理解、行为预测和3D物体检测。
  • 场景丰富:包括城市和高速公路场景,覆盖多种天气和时间条件。

缺点:

  • 数据量较大:需要较大的存储和计算资源。
  • 标注成本高:数据标注的工作量大,成本较高。

适用场景:

  • 适合需要多传感器融合、场景理解和行为预测的研究和开发工作。
  • 高质量的数据需求,尤其是在复杂城市环境中的自动驾驶开发。

详细介绍

数据集是一个带有3d对象注释的大规模自动驾驶数据集。

●全传感器套件(1倍激光雷达,5倍雷达,6倍摄像头,IMU, GPS)

●1000个20秒的场景

●140万张相机图像

●39万次激光雷达扫描

●两个不同的城市:波士顿和新加坡

●左侧与右侧交通

●详细地图信息

●1.4M 3D边框手动标注23个对象类

●新增:为32个类别手动标注了1.1亿个激光雷达点

1、下载

完整的nuScenes数据集包含1000个场景,Mini中包含10个场景

  • https://www.nuscenes.org/download

  • 深入nuScenes数据集(1/6)-https://www.linpx.com/p/deep-into-the-nuscenes-dataset-16.html

  • https://github.com/nutonomy/nuscenes-devkit/blob/master/docs/schema_nuscenes.md

image-20240621180944566

顺带一提,这里面还有一个nuScenes预测任务的比赛

image-20240621181320329

预测nuScenes数据集中物体的未来轨迹。 轨迹是x-y位置的序列。对于这个挑战,预测时间为6秒,采样时间为 2赫兹。

image-20240621180229101

2、说明

image-20240621212806448

2、Waymo Open Dataset (2020):

  • Agents:行人、骑行者、车辆

  • Sensors:激光雷达、摄像头

  • Scene:城市

  • Duration and tracking quantity:103354个10Hz段,20秒每段

  • Data type:轨迹、高清地图

  • Typical methods:DenseTNT, Scene Transformer

  • Download Link: Waymo Open Dataset

  • Paper Link:https://openaccess.thecvf.com/content/ICCV2021/html/Ettinger_Large_Scale_Interactive_Motion_Forecasting_for_Autonomous_Driving_The_Waymo_ICCV_2021_paper.html Large Scale Interactive Motion Forecasting for Autonomous Driving: The Waymo Open Motion Dataset

优点:

  • 高质量的LiDAR数据:提供了丰富的3D点云数据,标注精确。
  • 开放数据集:数据集开放,易于获取和使用。
  • 多样化场景:涵盖城市道路和高速公路,支持多种驾驶场景。

缺点:

  • 数据规模大:需要较高的计算和存储能力。
  • 标注复杂:高精度的标注要求较高的处理和计算资源。

适用场景:

  • 适用于需要高质量LiDAR数据和复杂场景理解的研究。
  • 特别适合3D物体检测、跟踪和行为预测算法的开发。
1、介绍

官方数据集中包含两类MotionPreception,由于本文重点在于轨迹预测,因此仅介绍Motion数据

image-20240621183532502

**Motionhttps://waymo.com/open/data/motion/**用于Sim Agents (2024 version), Motion Prediction (2024 version), Occupancy and Flow Prediction (2024 version), and Interaction Prediction.等内容

image-20240621183859899

**Perceptionhttps://waymo.com/open/data/perception/**用于 3D Semantic Segmentation, 3D Camera-Only Detection, Real-time 3D Detection, Real-time 3D Tracking, 2D Detection, 2D Tracking, and Domain Adaptation.等内容

image-20240621183653478

2、概述

动作数据集以包含协议缓冲区数据的分片TFRecord格式文件的形式提供。数据被分成训练集、测试集和验证集,其中70%的训练集、15%的测试集和15%的验证集。该数据集由103354个片段组成,每个片段包含20秒的10Hz目标轨迹和片段所覆盖区域的地图数据。这些片段被进一步分解为9秒的窗口(1秒的历史数据和8秒的未来数据),这些窗口有不同的重叠。数据以两种形式提供。第一种形式存储为场景协议缓冲区。第二种形式将场景原型转换为tf。示例protos包含用于构建模型的张量。这两种格式的详细信息在本页的末尾。

训练集或验证集中的每9秒序列都包含1秒的历史数据、1个当前时间的样本和8秒的未来数据,采样频率为10 Hz。这对应于10个历史样本、1个当前时间样本和80个未来样本,总共91个样本。测试集隐藏了总共11个样本(10个历史样本和1个当前时间样本)的真实未来数据。

Scenario Proto format 场景原型格式

https://images.ctfassets.net/e6t5diu0txbw/5F0OTYxcAhO8AFOqWSinuY/90c849459a962141d105ea120de30168/unnamed.gif?fm=webp

3、下载

需要注册账号选择需要的数据集下载即可

image-20240621185206411

4、教程

如果您想要直接进入,请查看这里的教程。Github repo还包括一个快速入门,其中包含Waymo开放数据集支持代码的安装说明。

https://github.com/waymo-research/waymo-open-dataset/blob/master/tutorial/tutorial_motion.ipynb

5、参考
  • Waymo数据集使用介绍(waymo-open-dataset)

  • Waymo的自动驾驶训练数据集WOD

3、Lyft Level 5 (2020):

  • Agents:行人、骑行者、车辆
  • Sensors:激光雷达、摄像头
  • Scene:城市
  • Duration and tracking quantity:1000+小时,从23辆车中收集16K英里的数据
  • Data type:轨迹、高清地图
  • Typical methods:Graph-LSTM
  • Download Link: Lyft Level 5 Dataset
  • Paper Link: https://proceedings.mlr.press/v155/houston21a.html One Thousand and One Hours: Self-driving Motion Prediction Dataset

优点:

  • 多传感器数据:包括摄像头、雷达和LiDAR数据。
  • 城市环境:重点覆盖城市环境,适合城市自动驾驶研究。
  • 高精度标注:标注数据详细,支持多种任务。

缺点:

  • 需要高性能计算:处理数据的计算资源需求较高。

适用场景:

  • 适用于城市环境下的自动驾驶研究和开发,特别是多传感器数据融合和场景理解。
1、官方
  • Unlocking Self-Driving Research: The Lyft Level 5 Perception Dataset and Competition
2、数据集
  • https://woven-planet.github.io/l5kit/dataset.html

image-20240621193222612

3、备注

这个项目视乎已终止且未得到积极维护

image-20240621193252893

image-20240621193319386

4、Argoverse (2019):

  • Agents:车辆
  • Sensors:激光雷达、摄像头
  • Scene:城市
  • Duration and tracking quantity:324,557个有趣的车辆轨迹,1000个驾驶小时
  • Data type:轨迹、高清地图
  • Typical methods:VectorNet, LaneRCNN
  • Download Link: Argoverse Dataset
  • Paper Link: https://arxiv.org/abs/2301.00493Argoverse 2: Next Generation Datasets for Self-Driving Perception and Forecasting

优点:

  • 多样化的场景:包括城市和高速公路环境。
  • 丰富的标注:提供了高质量的标注,涵盖对象检测、轨迹预测等任务。
  • 数据格式标准化:数据格式标准化,便于使用和开发。

缺点:

  • 数据规模大:需要较多的存储和计算资源。
  • 标注成本高:数据标注工作量大。

适用场景:

  • 适合复杂场景下的自动驾驶算法开发,特别是在城市环境中的应用研究。
  • 强调场景理解和轨迹预测的任务。
1、数据下载

Argoverse包含两个版本Argoverse 1Argoverse 2

image-20240621195902545

点击下载

image-20240621200155449

https://www.argoverse.org/av2.html#download-link

image-20240621200255481

image-20240621212949349

2、参考
  • GitHub - jchengai/forecast-mae

  • Argoverse2数据集的导入-CSDN博客

  • Argoverse数据集可视化/Argoverse-api-CSDN博客

  • GitHub - argoverse/argoverse-api: Official GitHub repository for Argoverse dataset 可视化

5、INTERACTION (2019):

  • Agents:车辆、行人
  • Sensors:无人机、摄像头
  • Scene:城市、高速公路
  • Duration and tracking quantity:11个地点,40,000辆车
  • Data type:轨迹、高清地图
  • Typical methods:IPTM
  • Download Link: INTERACTION Dataset
  • Paper Link: https://arxiv.org/abs/1910.03088 INTERACTION Dataset: An INTERnational, Adversarial and Cooperative moTION Dataset in Interactive Driving Scenarios with Semantic Maps

优点:

  • 专注于行为预测:特别适合研究交通参与者之间的互动和行为预测。
  • 多场景数据:涵盖多种场景和交通情况,数据丰富。

缺点:

  • 数据标注需求高:高质量的标注需要较多的人力和时间。

适用场景:

  • 适合行为预测和交通参与者互动研究,尤其是在复杂交通场景中的应用。
1、数据请求
  • 特点: INTERACTION 数据集包含各种交通场景下的车辆轨迹数据,涵盖城市交叉口、环形交叉口等多样场景,适合研究车辆间交互影响的预测问题。
  • 链接: INTERACTION Dataset
  • 备注:需要单独请求,随后会发到邮箱

image-20240620175623802

image-20240621201342111

6、HighD (2018):

  • Agents:车辆
  • Sensors:无人机
  • Scene:高速公路
  • Duration and tracking quantity:110500辆车,147驾驶小时
  • Data type:轨迹、车道
  • Typical methods:MHA-LSTM
  • Download Link: HighD Dataset
  • Paper Link: https://arxiv.org/abs/1910.03088 The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems

优点:

  • 高速公路数据:专注于高速公路场景,数据集质量高。
  • 数据标注细致:包括多种车辆和道路标志的标注,适合路径规划研究。

缺点:

  • 数据场景有限:主要集中在高速公路场景,适用范围有限。

适用场景:

  • 适合高速公路场景下的自动驾驶研究和路径规划算法开发。
1、介绍

image-20240621201620741

2、数据请求

按照官方的要求,需要填写申请表,笔者正在申请

image-20240621201726617

7、Apolloscape (2018):

  • Agents:行人、骑行者、车辆
  • Sensors:激光雷达、摄像头
  • Scene:城市
  • Duration and tracking quantity:1000公里轨迹
  • Data type:轨迹
  • Typical methods:GRIP
  • Download Link: Apolloscape Dataset
  • Paper Link: https://ieeexplore.ieee.org/abstract/document/8753527 The ApolloScape Open Dataset for Autonomous Driving and Its Application

优点:

  • 多传感器数据:包括摄像头、LiDAR和雷达数据。
  • 数据覆盖广:涵盖城市、农村和高速公路场景,数据丰富。

缺点:

  • 数据标注复杂:标注过程复杂,需要较高的技术支持。
  • 数据处理要求高:处理和存储数据需要较高的计算资源。

适用场景:

  • 适合多场景下的自动驾驶研究,特别是需要多传感器数据融合的应用。
1、数据下载

image-20240621202824709

image-20240621202938873

image-20240621202912095

我们的轨迹数据集包括基于相机的图像, 激光雷达扫描点云,并手动注释轨迹。它被收集在各种 照明条件和交通密度。更具体地说,它包含高度复杂的流量 车流中混杂着车辆、乘客和行人。

2、数据请求

官方提供了一些样本数据,完整版数据仍需邮件联系apolloscape.auto@gmail.com,全部数据笔者正在申请

image-20240621202957735

8、KITTI (2013):

  • Agents:行人、骑行者、车辆
  • Sensors:激光雷达、摄像头
  • Scene:城市、高速公路
  • Duration and tracking quantity:50个序列
  • Data type:图像、点云
  • Typical methods:DESIRE, MANTRA
  • Download Link: KITTI Dataset
  • Paper Link: https://journals.sagepub.com/doi/full/10.1177/0278364913491297 Vision meets robotics: The kitti dataset

优点:

  • 经典数据集:在自动驾驶领域广泛使用,数据格式标准化。
  • 易于获取和使用:数据集公开,易于下载和使用。

缺点:

  • 数据更新不频繁:数据集较老,部分数据不再符合当前技术水平。
  • 场景较为简单:主要集中在城市和高速公路,复杂场景较少。

适用场景:

  • 适用于入门级的自动驾驶研究和基准测试,特别是计算机视觉和深度学习算法的开发。
1、轨迹检测

image-20240621204047681

image-20240621204210321

2、数据集下载

https://www.cvlibs.net/datasets/kitti/eval_tracking.php

image-20240621204405136

image-20240621204503630

9、NGSIM (2006):

  • Agents:车辆
  • Sensors:摄像头
  • Scene:高速公路
  • Duration and tracking quantity:两段高速公路的90分钟记录
  • Data type:轨迹、车道
  • Typical methods:CS-LSTM, TS-GAN
  • Download Link: NGSIM Dataset Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data
  • Paper Link: Traffic analysis tools, Accessed: Jan. 6, 2021. [Online]. Available: https://ops.fhwa.dot.gov/trafficanalysistools/index.htm

优点:

  • 交通流数据:专注于交通流和车流数据,适合交通流分析和交通管理研究。
  • 数据覆盖广:涵盖多种交通情况和时间段,数据丰富。

缺点:

  • 数据标注有限:标注信息相对简单,缺少复杂的物体检测和行为标注。
  • 场景局限性:数据集主要集中在高速公路和城市道路,场景较为单一。

适用场景:

  • 适合交通流分析、交通预测和交通管理研究,尤其是交通行为建模和流量预测。
1、数据下载

Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data

image-20240621204951963

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/731337.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

智慧办公新篇章:可视化技术引领园区管理革命

随着科技的飞速发展,办公方式也在经历着前所未有的变革。在这个信息爆炸的时代,如何高效、智能地管理办公空间,成为了每个企业和园区管理者面临的重要课题。 智慧办公园区作为未来办公的新趋势,以其高效、便捷、智能的特点&#x…

鸿蒙NEXT实战开发: 依据前端对http请求进行二次简单封装

一、为什么要对http请求进行封装? 在我看来二次封装有一下几点好处 代码封装之后,开发人员只用关注业务层面的东西,不用去过多浪费时间在接口请求数据处理上。封装之后代码更加简洁,通俗易懂,方便后期维护&#xff0…

数据库讲解---(数据库保护)【上】

目录 一.事务 1.1事务的概念【重要】 1.2事务的特性【重要】 1.2.1原子性(Atomicity) 1.2.2一致性(Consistency) 1.2.3隔离性(Isolation) 1.2.4持久性(Durability) 二.数据库恢复 2.1数据库系统的故障 2.1.1事务内部故障 2.1.2系统故障 2.1.3介质故障 2.1.4计算机…

甘肃的千层烤馍:传统面点的魅力绽放

千层烤馍,作为甘肃美食文化的重要象征,以其独特的外形和丰富的口感,吸引着众多食客。它的外观犹如一件精美的艺术品,层层叠叠,金黄酥脆,散发着诱人的香气。 在甘肃平凉地区制作千层烤馍&#xff0c…

详解|什么样的SSL证书能助力企业通过等保与密评?

企业在过等级保护(简称“等保”)与密码评测(简称“密评”)的时候,SSL证书作为网络安全的基础组件之一,其选择与部署对于企业顺利通过等保测评与密评至关重要。那什么样的SSL证书能够有效助力企业达成这一目…

gbase8s之Encoding or code set not supported

如图发生以下错误: 解决办法:在url里加上ifx_use_strenctrue 就可以了 参数解释:

镜像发布至dockerHub

1、login 没有账号的话去注册一个 https://hub.docker.com docker login 输入账号密码和账号2、修改镜像名格式 可以直接招我的修改 格式为你的 hub名/镜像名 3、推送

与大模型交手近 1500 天,智源仍在坚持原始创新

前言 2024 上半年, OpenAI 的成果从世界模拟器 Sora,到首个实现多模态 in 到多模态 out 的 GPT-4o ,仍在强势推进着迈向 AGI 的节奏。面对技术上的差距,追赶 OpenAI ——是这场人工智能革命浪潮发展至今, AI 界仍在追…

密码CTF(5)

一、[安洵杯 2020]密码学?爆破就行了——sha256掩码爆破 1.题目: #!/usr/bin/python2 import hashlib from secret import SECRET from broken_flag import BROKEN_FLAGflag d0g3{ hashlib.md5(SECRET).hexdigest() } broken_flag d0g3{71b2b5616…

解决virtualbox虚拟机与主机之间复制粘贴

1、在VirtualBox管理器中设置共享粘贴板和拖放方向为双向 2、在存储中设置使用主机输入输出(I/O)缓存。 3、在存储→控制器:SATA→***.vdi下勾选固态驱动器 4、在虚拟机→设备→安装增强功能 如果上述操作重启虚拟机后,还不行&am…

揭秘Xinstall如何助力App推广,提升用户量与转化率双指标!

在移动互联网时代,App的推广与运营成为了每个开发者必须面对的重要课题。然而,推广效果的评估和优化往往令众多开发者头疼不已。今天,我们将为您揭秘一款能够解决这一痛点的利器——Xinstall,带您一起探讨它如何助力App推广&#…

深度神经网络一

文章目录 深度神经网络 (DNN)1. 概述2. 基本概念3. 网络结构 深度神经网络的层次结构详细讲解1. 输入层(Input Layer)2. 隐藏层(Hidden Layers)3. 输出层(Output Layer)整体流程深度神经网络的优点深度神经…

项目实践---Windows11中安装Zookeeper/Hadoop/Hive的部分问题解决

一.Hadoop与Hive兼容版本选择 正常来说,Hadoop与Hive版本不兼容会出现很多问题导致hive安装失败,可以先确定HIve的版本,比如:要用Hive3.1.2版本,该如何确定使用Hadoop的版本呢,需要我们在hive源码中找到对…

C盘满了怎么清理?一招让你远离C盘空间不足的烦恼

C盘满了怎么清理?一招让你远离C盘空间不足的烦恼,当C盘空间满了时,会给我们来一系列烦恼和潜在问题。比如:系统运行缓慢、程序崩溃或无法安装、启动时间变长、系统不稳定、文件管理困难、游戏卡顿、电脑卡顿、系统故障等问题&…

「漏洞复现」真内控国产化开发平台 preview 任意文件读取漏洞

0x01 免责声明 请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。工具来自网络,安全性自测,如有侵权请联系删…

Python基础用法 之 输入 与 输出

1.输入 (1)什么是输入? 输入:获取键盘的输入信息。 (2)语法 变量 input(给使⽤者的提示信息,即告诉别⼈输入什么内容) (3)注意事项 代码从上到下执⾏, 当代码执⾏遇到 input 的时候…

【产品经理】订单处理8-智能分仓

在电商ERP系统中,通常智能分仓策略是系统中最重要的功能之一,大公司若仓库较多时,智能分仓策略中也会加入大数据团队,通过算法来计算最优仓库。 本次讲解的智能分仓适用于中小公司,适合拥有2个以上10个以下仓库的公司…

ServBay 下一代Web开发环境

ServBay是一个集成式、图形化的本地化Web开发环境。开发者通过ServBay几分钟就能部署一个本地化的开发环境。解决了Web开发者(比如PHP、Nodejs)、测试工程师、小型团队安装和维护开发测试环境的问题,同时可以快速的进行环境的升级以及维护。S…

如何将现有系统逐步优化成微服务设计

目录 基础服务改造核心步骤准备阶段实施阶段 基础服务设计 本文诞生于学习架构实践专栏后的深思以及总结,结合公司之前“大泥球”的架构风格,改造服务设计的思维。 改造公司系统服务主要原因:1、代码类似“屎山”,牵一发而动全身&…

Virtualbox主机和虚拟机之间文件夹共享及双向拷贝

在VirtualBox这样的虚拟化环境中,实现主机与虚拟机之间的文件夹共享与双向文件传输是一个常见的需求。下面,我们将详细讲解如何在VirtualBox中实现这一功能。 一、安装与准备 首先,确保你已经安装了VirtualBox,并在其上成功创建…