数据仓库的实际应用示例-广告投放平台为例

数据仓库的数据分层通常包括以下几层:

  1. ODS层:存放原始数据,如日志数据和结构化数据。
  2. DWD层:进行数据清洗、脱敏、维度退化和格式转换。
  3. DWS层:用于宽表聚合值和主题加工。
  4. ADS层:面向业务定制的应用数据层。
  5. DIM层:一致性维度建模,包括低基数和高基数维度数据。

image.png

为了更好地理解数据仓库的各个方面,我们以一个广告投放平台为例,详细说明各个层级的数据处理和使用,并附带一些代码示例。

1. ODS层

ODS(Operational Data Store)层存放的是原始数据。比如,广告点击日志数据。

示例数据

{
    "log_id": "12345",
    "user_id": "67890",
    "ad_id": "54321",
    "timestamp": "2023-06-21T12:00:00Z",
    "action": "click",
    "cost": 0.5
}
2. DWD层

DWD(Data Warehouse Detail)层进行数据清洗、脱敏、维度退化和格式转换。

数据清洗代码示例(使用PySpark):

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, from_unixtime

# 创建SparkSession
spark = SparkSession.builder.appName("DWD Layer").getOrCreate()

# 读取ODS层数据
ods_data = spark.read.json("hdfs://path/to/ods/data")

# 数据清洗
dwd_data = ods_data.withColumn("timestamp", from_unixtime(col("timestamp")))

# 写入DWD层
dwd_data.write.mode("overwrite").json("hdfs://path/to/dwd/data")
3. DWS层

DWS(Data Warehouse Service)层用于宽表聚合和主题加工。

宽表聚合代码示例

from pyspark.sql.functions import sum

# 聚合用户点击行为数据
dws_data = dwd_data.groupBy("user_id").agg(sum("cost").alias("total_cost"))

# 写入DWS层
dws_data.write.mode("overwrite").json("hdfs://path/to/dws/data")
4. ADS层

ADS(Application Data Store)层面向业务定制的应用数据层。比如,计算每个广告的总点击次数。

业务定制数据处理代码示例

from pyspark.sql.functions import count

# 计算每个广告的总点击次数
ads_data = dwd_data.groupBy("ad_id").agg(count("action").alias("click_count"))

# 写入ADS层
ads_data.write.mode("overwrite").json("hdfs://path/to/ads/data")
5. DIM层

DIM(Dimension)层用于一致性维度建模。

维度建模示例

# 读取广告信息维度数据
ad_info = spark.read.json("hdfs://path/to/dim/ad_info")

# 读取ADS层数据
ads_data = spark.read.json("hdfs://path/to/ads/data")

# 关联广告信息维度数据
final_data = ads_data.join(ad_info, "ad_id")

# 写入最终数据
final_data.write.mode("overwrite").json("hdfs://path/to/final/data")

数据指标示例

数据指标分为原子指标、复合指标和派生指标。下面以广告点击数据为例说明各类指标的计算。

原子指标

# 原子指标:广告点击次数
ad_clicks = dwd_data.filter(col("action") == "click").count()
print(f"广告点击次数: {ad_clicks}")

复合指标

# 复合指标:点击率
total_impressions = dwd_data.filter(col("action") == "impression").count()
click_through_rate = ad_clicks / total_impressions
print(f"点击率: {click_through_rate}")

派生指标

# 派生指标:按天计算的点击次数
daily_clicks = dwd_data.filter(col("action") == "click").groupBy("date").count()
daily_clicks.show()

结论

通过以上示例代码,我们可以看到数据仓库各个层级的数据处理流程,以及如何定义和计算各种数据指标。这些规范和方法不仅帮助企业构建高效、可维护的数据仓库系统,还能为业务决策提供有力的数据支持。

希望这个简单的示例能够帮助读者更好地理解数据仓库的设计和应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/730758.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【大数据】—二手车用户数据可视化分析案例

项目背景 在当今的大数据时代,数据可视化扮演着至关重要的角色。随着信息的爆炸式增长,我们面临着前所未有的数据挑战。这些数据可能来自社交媒体、商业交易、科学研究、医疗记录等各个领域,它们庞大而复杂,难以通过传统的数据处…

掌握数据魔方:Xinstall引领ASA全链路数据归因新纪元

一、引言 在数字化时代,数据是App推广和运营的核心驱动力。然而,如何准确获取、分析并应用这些数据,却成为了许多开发者和营销人员面临的痛点。Xinstall作为一款专业的App全渠道统计服务商,致力于提供精准、高效的数据解决方案&a…

Linux开发讲课8--- linux的5种IO模型

一、这里IO是什么 操作系统为了保护自己,设计了用户态、内核态两个状态。应用程序一般工作在用户态,当调用一些底层操作的时候(比如 IO 操作),就需要切换到内核态才可以进行 服务器从网络接收的大致流程如下&#xff1…

拍卖商城开发要点源码及功能分析

要创建一个正规的拍卖商城平台,需要遵循一系列步骤,确保平台的合法性、专业性和用户体验。以下是一个详细的步骤指南: 一、明确平台定位与规划 确定拍卖商城平台的目标市场、用户群体和主要拍卖品类。 制定平台的发展规划和战略目标&#…

gorm 学习笔记 五:自定义数据类型和枚举

一:Json类型 Info保存到数据库时,通过Value()转化为json,读取出来的时候 json字符串自动转成结构体Info type Info struct {Status string json:"status"Addr string json:"addr"Age int json:"age"…

无人机比赛有哪些?

无人机比赛项目可是多种多样,精彩纷呈呢! 常见的比赛项目包括S形绕桩赛、平台起降赛、应用航拍、投掷物品和定点飞行等。这些项目不仅考验无人机的性能,更考验飞行员的操控技巧。 在S形绕桩赛中,飞行员需要操控无人机快速而准确…

云计算技术高速发展,优势凸显

云计算是一种分布式计算技术,其特点是通过网络“云”将巨大的数据计算处理程序分解成无数个小程序,并通过多部服务器组成的系统进行处理和分析这些小程序,最后将结果返回给用户。它融合了分布式计算、效用计算、负载均衡、并行计算、网络存储…

初识 GPT-4 和 ChatGPT

文章目录 LLM 概述理解 Transformer 架构及其在 LLM 中的作用解密 GPT 模型的标记化和预测步骤 想象这样⼀个世界:在这个世界里,你可以像和朋友聊天⼀样快速地与计算机交互。那会是怎样的体验?你可以创造出什么样的应用程序?这正是…

市场价格到底是因为什么而变动?

在外汇及广泛的金融市场中,影响金融工具价格起伏的因素纷繁复杂。然而,万变不离其宗,无论是哪个市场,价格的最终决定力量始终是供需之间的平衡法则。 对于外汇、大宗商品等金融市场而言,表面上似乎受宏观经济数据、央…

分享HTML显示2D/3D时间

效果截图 实现代码 <!DOCTYPE html> <head> <title>three.jscannon.js Web 3D</title><meta charset"utf-8"><meta name"viewport" content"widthdevice-width,initial-scale1,maximum-scale1"><meta n…

基于组件的架构:现代软件开发的基石

目录 前言1. 基于组件的架构概述1.1 什么是组件&#xff1f;1.2 组件的分类 2. 基于组件的架构的优势2.1 提高代码的可重用性2.2 增强系统的灵活性2.3 简化维护和升级2.4 促进团队协作 3. 实现基于组件的架构3.1 识别和定义组件3.2 设计组件接口3.3 组件的开发和测试3.4 组件的…

Python 爬取淘宝指定搜索商品评论 标题 销量 计算sign

只需要替换原来的Cookie和token即可使用&#xff0c;自动计算对应链接地址的sign直接使用即可。需要注意是一个账号爬取过多会有验证码 import json import hashlib import random import timeimport pandas as pd import requestsresults []def fetch_review_list(datas, md…

张大哥笔记:5种信息差赚钱模式

从古至今&#xff0c;赚钱最快的路子就一个&#xff0c;而且从未改变&#xff0c;那就是信息差&#xff01;在商业活动中&#xff0c;信息不对称现象普遍存在&#xff0c;如果你善于利用这些信息差的话&#xff0c;就可以赚到钱&#xff01; 1、价格的信息差 商品价格在不同地…

【LLM-多模态】高效多模态大型语言模型综述

一、结论写在前面 模型规模的庞大及训练和推理成本的高昂&#xff0c;限制了MLLMs在学术界和工业界的广泛应用。因此&#xff0c;研究高效轻量级的MLLMs具有巨大潜力&#xff0c;特别是在边缘计算场景中。 论文深入探讨了高效MLLM文献的领域&#xff0c;提供了一个全面的视角…

FLASH闪存

一、FLASH简介 1、FLASH简介 &#xff08;1&#xff09;STM32F1系列的FLASH包含程序存储器、系统存储器和选项字节三个部分&#xff0c;通过闪存存储器接口&#xff08;外设&#xff09;可以对程序存储器和选项字节进行擦除和编程 &#xff08;2&#xff09;读写FLASH的用途…

Setapp AI 怎么样,值得订阅吗?

Setapp 是一款提供 240 多款 Mac 软件库&#xff0c;可以满足 Mac 和 iOS 用户的各种需求。只需支付一笔订阅费&#xff0c;就可以使用一系列应用程序&#xff0c;这些应用程序可以简化任务、提高创造力和组织工作流程。不过&#xff0c;Setapp 并不只注重应用程序的数量&#…

Transformer预测 | 基于Transformer的风电功率多变量时间序列预测(Matlab)

文章目录 预测效果文章概述模型描述程序设计参考资料预测效果 文章概述 Transformer预测 | 基于Transformer的风电功率多变量时间序列预测(Matlab) Transformer 模型本质上都是预训练语言模型,大都采用自监督学习 (Self-supervised learning) 的方式在大量生语料上进行训练,…

【机器学习300问】127、怎么使用词嵌入?

在探讨如何使用词嵌入之前&#xff0c;我们首先需要理解词嵌入模型的基础。之前的文章已提及&#xff0c;词嵌入技术旨在将文本转换为固定长度的向量&#xff0c;从而使计算机能够解析和理解文本内容。可以跳转下面链接去补充阅读哦&#xff01; 【机器学习300问】126、词嵌入…

【链表经典面试题】LeetCode138.复制带随机指针的链表(链表深拷贝)

&#x1f4c7;文章目录 &#x1f680;题目描述&#x1f680;思路1&#xff1a;&#x1f680;思路2&#xff1a;&#x1f680;完整代码 &#x1f680;题目描述 解读&#xff1a; 题目意思就是 给你一个链表 这个链表中除了有next指针之外 还有一个指向这个链表的随机位置的一个指…

简易人工智能入门

一、监督or非监督 监督学习&#xff08;Supervised Learning&#xff09;&#xff1a;训练集有标记信息&#xff08;Y&#xff09;&#xff0c;学习方式有分类和回归 无监督学习&#xff08;Unsupervised Learning&#xff09;&#xff1a;训练集没有标记信息&#xff0c;学习…