Matlab数学建模实战应用:案例4 - 图像处理

目录

前言

一、图像处理基础

二、Matlab图像处理工具箱

三、案例:图像锐化、去噪和分割

步骤 1:读取和显示图像

步骤 2:图像锐化

步骤 3:图像去噪

步骤 4:图像分割

完整代码示例

四、实际应用

实例总结

总结


前言

图像处理是计算机视觉和数字图像处理领域的重要组成部分,通过数学建模和算法对图像进行分析和处理,可以实现图像增强、图像分割、图像识别等功能。本文将详细介绍一个图像处理案例,包括图像处理基础、Matlab图像处理工具箱、案例实现和实际应用。

一、图像处理基础

  1. 图像的数字表示
    • 数字图像由像素组成,每个像素有一个或多个颜色通道值。常见的图像格式包括灰度图像(单通道)、RGB图像(三通道)等。

    % 读取灰度图像
    gray_image = imread('gray_image.png');
    % 读取RGB图像
    rgb_image = imread('rgb_image.png');

  1. 像素操作
    • 图像处理的基本操作是对图像像素进行操作,包括图像的读取、显示、增强、变换等。

    % 读取图像
    image = imread('example_image.png');
    % 显示图像
    imshow(image);
    % 访问像素值
    pixel_val = image(50, 100, :);
    % 修改像素值
    image(50, 100, :) = [255, 0, 0]; % 将某像素点设为红色

  1. 图像类型
    • 图像类型包括二值图像(binary image)、灰度图像(grayscale image)、索引图像(indexed image)和RGB图像(RGB image)。

以下表格总结了不同类型图像的特点:

图像类型说明示例代码
二值图像每个像素为0或1bw_image = imbinarize(image);
灰度图像每个像素为0到255之间的灰度值gray_image = rgb2gray(image);
索引图像具有调色板的图像[ind_image, map] = rgb2ind(image, 256);
RGB图像每个像素有三个值(红绿蓝)rgb_image = imread('image.png');

二、Matlab图像处理工具箱

Matlab 提供了强大的图像处理工具箱(Image Processing Toolbox),内置了丰富的图像处理函数,便于进行各种图像分析和处理任务。

  1. 图像读取和显示
    • 使用 imread 读取图像,使用 imshow 显示图像。

    img = imread('example_image.png');
    imshow(img);

  1. 图像增强
    • 图像增强包括对比度调整、去噪、边缘增强等。

    % 直方图均衡化
    enhanced_img = histeq(img);
    % 中值滤波去噪
    denoised_img = medfilt2(img);

  1. 图像分割
    • 图像分割是将图像分成多个有意义的部分,例如分割出物体区域。

    % 基于阈值的图像分割
    bw = imbinarize(rgb2gray(img), 'adaptive');
    % 使用分水岭算法进行图像分割
    D = -bwdist(~bw);
    Ld = watershed(D);

  1. 图像特征提取
    • 提取图像的特征用于后续的分析,如边缘检测、角点检测等。

    % 边缘检测
    edges = edge(rgb2gray(img), 'Canny');
    % 角点检测
    corners = detectHarrisFeatures(rgb2gray(img));

以下表格总结了常用的图像处理函数及其示例:

功能函数示例代码
图像读取和显示imreadimshowimg = imread('example_image.png'); imshow(img);
图像增强histeqmedfilt2enhanced_img = histeq(img); denoised_img = medfilt2(img);
图像分割imbinarizewatershedbw = imbinarize(rgb2gray(img), 'adaptive');
图像特征提取edgedetectHarrisFeaturesedges = edge(rgb2gray(img), 'Canny'); corners = detectHarrisFeatures(rgb2gray(img));

三、案例:图像锐化、去噪和分割

为了更好地理解图像处理技术,以下是一个完整的图像处理案例,包括图像锐化、去噪和分割的实现过程。

步骤 1:读取和显示图像

% 读取原始图像
img = imread('example_image.png');
% 显示原始图像
figure;
imshow(img);
title('Original Image');

步骤 2:图像锐化

% 使用锐化滤波器增强图像细节
sharpened_img = imsharpen(img, 'Radius', 2, 'Amount', 1);
% 显示锐化后的图像
figure;
imshow(sharpened_img);
title('Sharpened Image');

步骤 3:图像去噪

% 使用中值滤波去噪
denoised_img = medfilt2(rgb2gray(sharpened_img), [3, 3]);
% 显示去噪后的图像
figure;
imshow(denoised_img);
title('Denoised Image');

步骤 4:图像分割

% 进行阈值分割
bw = imbinarize(denoised_img, 'adaptive');
% 显示二值化图像
figure;
imshow(bw);
title('Binarized Image');

% 使用分水岭算法进行图像分割
D = -bwdist(~bw);
Ld = watershed(D);
segmented_img = label2rgb(Ld);
% 显示分割结果
figure;
imshow(segmented_img);
title('Segmented Image');

完整代码示例

% 读取原始图像
img = imread('example_image.png');
% 显示原始图像
figure;
imshow(img);
title('Original Image');

% 使用锐化滤波器增强图像细节
sharpened_img = imsharpen(img, 'Radius', 2, 'Amount', 1);
% 显示锐化后的图像
figure;
imshow(sharpened_img);
title('Sharpened Image');

% 使用中值滤波去噪
denoised_img = medfilt2(rgb2gray(sharpened_img), [3, 3]);
% 显示去噪后的图像
figure;
imshow(denoised_img);
title('Denoised Image');

% 进行阈值分割
bw = imbinarize(denoised_img, 'adaptive');
% 显示二值化图像
figure;
imshow(bw);
title('Binarized Image');

% 使用分水岭算法进行图像分割
D = -bwdist(~bw);
Ld = watershed(D);
segmented_img = label2rgb(Ld);
% 显示分割结果
figure;
imshow(segmented_img);
title('Segmented Image');

四、实际应用

图像处理技术在多个领域具有广泛的实际应用,包括但不限于:

  1. 医学图像处理
    • 医学图像处理用于CT、MRI、X射线等医学影像的分析与处理。

    % 读取并显示医学图像
    medical_img = imread('ct_scan.png');
    figure;
    imshow(medical_img);
    title('CT Scan Image');

    % 应用图像分割识别肿瘤区域
    gray_medical_img = rgb2gray(medical_img);
    tumor_segmented = imbinarize(gray_medical_img, 'adaptive');
    figure;
    imshow(tumor_segmented);
    title('Tumor Segmentation');

  1. 遥感图像处理
    • 遥感图像处理用于地理信息系统、环境监测等领域,对卫星或无人机拍摄的遥感图像进行分析。

% 读取并显示遥感图像
remote_img = imread('satellite_image.png');
figure;
imshow(remote_img);
title('Satellite Image');

% 进行边缘检测识别地物轮廓
gray_remote_img = rgb2gray(remote_img);
edges_remote = edge(gray_remote_img, 'Canny');
figure;
imshow(edges_remote);
title('Edge Detection of Satellite Image');

 

  1. 计算机视觉
    • 图像处理技术在计算机视觉领域广泛应用,例如目标检测、人脸识别、自动驾驶等。

 

% 读取并显示人脸图像
face_img = imread('face_image.jpg');
figure;
imshow(face_img);
title('Face Image');

% 进行人脸检测
face_detector = vision.CascadeObjectDetector();
bbox = step(face_detector, face_img);
detected_img = insertShape(face_img, 'Rectangle', bbox, 'LineWidth', 3);
figure;
imshow(detected_img);
title('Face Detection');

 

  1. 工业质检
    • 在工业生产中,使用图像处理技术进行质量检测,提高生产效率和产品质量。

 

% 读取并显示工业产品图像
product_img = imread('product_image.png');
figure;
imshow(product_img);
title('Product Image');

% 进行图像分割识别缺陷区域
gray_product_img = rgb2gray(product_img);
bw_product = imbinarize(gray_product_img, 'adaptive');
defects_segmented = bwproduct;
figure;
imshow(defects_segmented);
title('Defects Segmentation');

 

实例总结

 

通过上述实例,我们展示了图像处理技术在实际中的应用,包括医学图像处理、遥感图像处理、计算机视觉和工业质检。以下是实际应用的总结:

 

应用场景说明示例代码
医学图像处理用于CT、MRI、X射线等医学影像的分析与处理medical_img = imread('ct_scan.png'); tumor_segmented = imbinarize(rgb2gray(medical_img));
遥感图像处理用于地理信息系统、环境监测等领域,对遥感图像进行分析remote_img = imread('satellite_image.png'); edges_remote = edge(rgb2gray(remote_img));
计算机视觉用于目标检测、人脸识别、自动驾驶等face_img = imread('face_image.jpg'); face_detector = vision.CascadeObjectDetector();
工业质检用于工业生产中进行质量检测,提高生产效率和产品质量product_img = imread('product_image.png'); bw_product = imbinarize(rgb2gray(product_img));

 

总结

 

本文详细介绍了图像处理技术的基础知识、Matlab图像处理工具箱的使用方法,以及通过实际案例展示了图像锐化、去噪和分割的具体实现。最后,讨论了图像处理技术在医学图像处理、遥感图像处理、计算机视觉和工业质检等领域的实际应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/727141.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

板凳----Linux/Unix 系统编程手册 25章 进程的终止

25.1 进程的终止:_exit()和exit() 440 1. _exit(int status), status 定义了终止状态,父进程可调用 wait 获取。仅低8位可用,调用 _exit() 总是成功的。 2.程序一般不会调用 _exit(), 而是调用库函数 exit()。exit() …

手机携号转网接口查询与对接指南:技术开发者必备手册

在当今通信技术飞速发展的背景下,手机携号转网已成为推动电信市场竞争、保障用户权益的重要手段。而对于技术开发者而言,掌握手机携号转网接口的查询与对接方法,无疑是提升服务兼容性和用户满意度的关键。 比如如下应用场景: 1.…

docker容器网络与宿主机网络冲突的原因与解决方案

一、故障现象 在用docker-compos.yaml文件或者手动创建docker网络时,可能会出现新建的容器网络与宿主机网络冲突,导致SSH远程连接中断,并无法再用Xshell等远程连接工具连接宿主机。现象如下: [rootcontroller ~]# docker networ…

Web数据提取:Python中BeautifulSoup与htmltab的结合使用

1. 引言 Web数据提取,通常被称为Web Scraping或Web Crawling,是指从网页中自动提取信息的过程。这项技术在市场研究、数据分析、信息聚合等多个领域都有广泛的应用。Python社区提供了丰富的工具和库来支持这一技术,其中BeautifulSoup和htmlt…

家有老人小孩,室内灰尘危害大!资深家政教你选对除尘空气净化器

哈喽,各位亲爱的朋友们!今天我们来聊聊每次大扫除时最让人头疼的问题——灰尘。你有没有发现,两天不打扫,桌子上就能积上一层灰;阳光一照,地板上的灰尘都在跳舞;整理被子的时候,空气…

卷积网络热图显示

【卷积神经网络可视化】之热度图可视化_visualizing heatmaps of class activation in an ima-CSDN博客 首先安装好对应的安装包,做这个的目的是为了可视化网络模型,查看每一个卷积之后得出的效果,可以通过改变网络模块来改进网络结构。这段…

基于JSP的二手交易平台网站

开头语: 你好,我是计算机专业的学长猫哥。如果你对二手交易平台感兴趣或有开发相关需求,欢迎联系我,我的联系方式见文末。 开发语言:Java 数据库:MySQL 技术:JSP技术 工具:ECLI…

RH850---注意问题积累--1

硬件规格(引脚分配,内存映射,外设功能规格、电气特性、时序图)和操作说明 注意:有关使用的详细信息,请参阅应用说明 ---------外围函数。。。 1:存储指令完成与后续同步指令的一代 当控制寄存器被存储指令更新时,从存储的执行开始…

3ds MAX 2024版资源包下载分享 3ds Max三维建模软件资源包下载安装

3DSMAX凭借其强大的功能和广泛的应用领域,吸引了无数创作者的青睐。 在游戏制作领域,3DSMAX展现出了无可比拟的优势。从细腻的角色建模到宏大的场景搭建,再到逼真的动画效果和渲染,它都能轻松应对,为游戏世界注入了生动…

通过MindSpore API实现深度学习模型

快速入门 将相应的包逐一导入到项目中,这是制作项目的第一步。 import mindspore from mindspore import nn from mindspore.dataset import vision, transforms from mindspore.dataset import MnistDataset 处理数据集 先从网上下载对应的数据集文件,MindSpor…

【GO】rotatelogs库和sirupsen/logrus库实现日志功能的实践用例

“github.com/sirupsen/logrus” 是一个 Go 语言的日志库,它提供了一种简单、灵活的方式来记录日志。该库的主要特点包括: 支持多种日志输出目标,如控制台、文件等。 支持日志轮转,可以按照时间或文件大小进行轮转。 支持日志格式…

“开放”的大模型到底有多“开放”?!

大模型技术论文不断,每个月总会新增上千篇。本专栏精选论文重点解读,主题还是围绕着行业实践和工程量产。若在某个环节出现卡点,可以回到大模型必备腔调或者LLM背后的基础模型重新阅读。而最新科技(Mamba,xLSTM,KAN)则…

FRP内网穿透及多级代理的使用

目录 0、前言 1、场景介绍 2、环境准备 2.1 下载frp 2.2 配置一台VPS 2.3 socks5客户端 2.5 网络环境准备 3、Frp设置 3.1 一层代理 3.1 二层代理 4、Frp总结 0、前言 FRP是比较老牌的也是比较流行的反向代理、内网穿透软件。FRP用途和使用场景可以看官方文档,…

【Linux工具】yum软件包管理器与Vim编辑器的高效运用

目录 Linux 软件包管理器 YUM 什么是软件包 安装工具 rzsz 及注意事项 查看软件包 安装和卸载软件 安装软件 卸载软件 Linux 开发工具 编辑器 - Vim 使用 ​编辑 Vim 与 Vi 的区别 Vim 的基本概念 三种模式 Vim 的基本操作 操作尝试: Vim 命令集解释…

【有趣分享】火柴人VS数学

今天看到一个很有趣的视频,是火柴人VS数学,大家感兴趣的可以看一下: 火柴人 VS 数学(Math)https://www.bilibili.com/festival/jzj2023?bvidBV1ph4y1g75E&spm_id_from333.337.search-card.all.click

[Linux] 系统的基本架构特点

Linux系统的基本结构 Linux is also a subversion of UNIX,it follows the basic structure of UNIX 内核(kernel): 操作系统的基本部分 管理与硬件相关的功能,分模块进行 常驻模块:进程控制IO操作文件\磁盘访问 用户不能直接访问内核 外壳(s…

java学习--集合(大写一.1)

看尚硅谷视频做的笔记 1.集合框架概述 1.1生活中的容器 首先知道集合是来解决什么问题的? 1.1.1内存层面需要针对于多个数据进行存储,此时,可以考虑的容器有:数组、集合类 对于内存层面的来说,断电后数据就不复存…

Python和OpenCV图像分块之图像边长缩小比率是2

import cv2 import numpy as npimg cv2.imread("F:\\mytupian\\xihuduanqiao.jpg") # 低反光 cv2.imshow(image, img) # # 图像分块 # dst np.zeros(img.shape, img.dtype) ratio 2 #图像边长缩小比率是2,也就是一张图片被分割成四份 height, wi…

模型预测控制MPC详解(附带案例实现)

模型预测控制MPC详解(附带案例实现) 文章目录 模型预测控制MPC详解(附带案例实现)1. 最优控制问题2. 什么是MPC3. 二次规划Quadratic Programming4. MPC为什么可以转换成QP问题(推导过程)5. MPC总结5.1 MPC…

希喂、K9、弗列加特主食冻干测评:这次,我们去了美国的实验室

主食冻干你有喂过吗? 作为有七年养猫经验的铲屎官,我强烈推荐,真的值得一试! 在宠物经济蓬勃发展的今天,养猫已经成为了一门学问。人们开始追求更加科学、健康的养猫方式。大量喂养案例表明,传统的商业猫粮…