线性回归模型介绍

线性回归模型是一种统计方法,用于分析两个或多个变量之间的关系。它通过拟合一条直线(称为回归线)来描述因变量(或目标变量)和一个或多个自变量(或预测变量)之间的关系。这种模型主要用于预测和解释变量间的线性关系。以下是线性回归模型的简单介绍:

1. 线性回归模型的定义

线性回归模型可以分为简单线性回归和多元线性回归:

简单线性回归:

简单线性回归用于描述一个因变量 y 与一个自变量 x 之间的关系。模型的形式为:
在这里插入图片描述

多元线性回归:

多元线性回归用于描述一个因变量y与多个自变量X1,X2…Xn之间的关系。模型的形式为:

在这里插入图片描述
2. 线性回归模型的假设

线性回归模型的应用基于以下假设:

线性关系:因变量与自变量之间存在线性关系。
独立性:观测值之间相互独立。
同方差性:误差项的方差恒定。
正态性:误差项服从正态分布。

3. 线性回归模型的拟合
线性回归模型的拟合通常通过最小二乘法(Ordinary Least Squares, OLS)来实现。最小二乘法的目标是找到回归系数 𝛽0,𝛽1,…,𝛽𝑛 ,

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/726221.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

文本挖掘与可视化:生成个性化词云的Python实践【7个案例】

文本挖掘与可视化:生成个性化词云的Python实践【7个案例】 词云(Word Cloud),又称为文字云或标签云,是一种用于文本数据可视化的技术,通过不同大小、颜色和字体展示文本中单词的出现频率或重要性。在词云中…

技术支持与开发助手:Kompas AI的革新力量

一、引言 随着技术发展的迅猛进步,技术开发的高效需求日益增加。开发人员面临着更复杂的项目、更紧迫的时间表以及不断提高的质量标准。在这种背景下,能够提供智能支持的工具变得尤为重要。Kompas AI 正是在这种需求下应运而生的。它通过人工智能技术&a…

Arduino平台软硬件原理及使用——电位器模块的使用

文章目录 一、电位器工作原理 二、电位器与滑动变阻器的异同 三、电位器模块在Arduino中的使用 一、电位器工作原理 上图为市面上常见的电位器元件实物图,其结构及封装根据不同的应用场景也有着不同,但其原理及本质基本一致。 电位器是具有三个引出端、…

车牌号识别(低级版)

import cv2 from matplotlib import pyplot as plt import os import numpy as np from paddleocr import PaddleOCR, draw_ocr from PIL import Image, ImageDraw, ImageFont# 利用paddelOCR进行文字扫描,并输出结果 def text_scan(img_path):ocr PaddleOCR(use_a…

[Mysql] 数据库基本概念

前言---数据库系统发展史 当今主流数据库介绍 一、操作系统 Linux操作系统 :RedHat CentOS Debian Ubuntu OpenSUSE 信创标准 会让系统逐渐国产化 国产系统:华为 欧拉 阿里 龙蜥 腾讯 tencentOS 银河麒麟 中标麒麟…

Linux远程管理日志

实验介绍 本实验旨在实现主机将日志远程发送到堡垒机或远程服务器上,实现通过一台机器管理整个网络内的主机的效果。 准备两台虚拟机作为生产主机和管理机,保证网络通畅,展示如下: 关闭firewalld,通过配置rsyslog&a…

分布式锁实现方案

分布式锁 1 什么是分布式锁 ​ 就是在分布式环境下,保证某个公共资源只能在同一时间被多进程应用的某个进程的某一个线程访问时使用锁。 2 几个使用场景分析 一段代码同一时间只能被同一个不同进程的一个线程执行 库存超卖 (库存被减到 负数),上面案…

【机器学习】【深度学习】MXnet神经网络图像风格迁移学习简介

使用部分 一、编程环境 编程环境使用Windows11上的Anaconda环境,Python版本为3.6. 关于Conda环境的建立和管理,可以参考我的博客:【Anaconda】【Windows编程技术】【Python】Anaconda的常用命令及实操 二、项目结构(代码非原创…

CTF-pwn-虚拟化-【d3ctf-2021-d3dev】

文章目录 参考流程附件检查启动信息逆向分析漏洞查看设备配置信息exp 参考 https://x1ng.top/2021/11/26/qemu-pwn/ https://bbs.kanxue.com/thread-275216.htm#msg_header_h1_0 https://xz.aliyun.com/t/6562?time__1311n4%2BxnD0DRDBAi%3DGkDgiDlhjmYh2xuCllx7whD&alic…

Opencv学习项目2——pytesseract

上一次我们使用pytesseract.image_to_boxes来检测字符,今天我们使用pytesseract.image_to_data来检测文本并显示 实战教程 和上一次一样,添加opencv-python和pytesseract库 首先我们先来了解一下pytesseract.image_to_data pytesseract.image_to_data(…

无人值守工厂设备日志采集工具

免费试用下载: Gitee下载 最新版本 优势: A. 开箱即用. 解压直接运行.不需额外安装. B. 批管理设备. 设备配置均在后台管理. C. 无人值守 客户端自启动,自更新. D. 稳定安全. 架构简单,内存占用小,通过授权访问.

Exposure X7软件安装包下载 丨不限速下载丨亲测好用

根据使用者情况表明Exposure的设计鼓励您进行创造性的工作,使用涂刷和遮罩工具将效果有选择地应用于图片的特定区域,非破坏性图层使您能够混合预设和调整,以获得无尽的外观。我们都知道Exposure是用于创意照片编辑的最佳图片编辑器&#xff0…

【机器学习】使用Python实现图神经网络(GNN):图结构数据的分析与应用

🔥 个人主页:空白诗 文章目录 一、引言二、图神经网络的基础知识1. 图的基本概念和术语2. 传统的图分析方法3. 图神经网络的基本原理4. GNN的基本模型 三、主要的图神经网络模型1. 图卷积网络(Graph Convolutional Network, GCN)2…

086. 分隔链表

题目链接 一、题目描述 (一) 题目 给你一个链表的头节点 head 和一个特定值 x ,请你对链表进行分隔,使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。你应当保留两个分区中每个节点的初始相对位置。 (二) 示例 示例 1: 输入&a…

2024.6.16 机器学习周报

目录 引言 Abstract 文献阅读 1、题目 2、引言 3、创新点 4、匹配问题 5、SuperGlue架构 5.1、注意力图神经网络(Attentional Graph Neural Network) 5.2、最佳匹配层(Optimal matching layer) 5.3、损失 6、实验 6.…

数据分析第三讲:numpy的应用入门(二)

NumPy的应用(二) 数组对象的方法 获取描述统计信息 描述统计信息主要包括数据的集中趋势、离散程度和频数分析等,其中集中趋势主要看均值和中位数,离散程度可以看极值、方差、标准差等,详细的内容大家可以阅读《统计…

【Java】已解决java.sql.SQLException异常

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决java.sql.SQLException异常 在Java中,java.sql.SQLException是一个通用的异常类,用于表示在数据库操作中发生的错误。无论是类型错误、数据类型不匹配…

YOLOv10改进 | 注意力篇 | YOLOv10引入iRMB

1. iRMB介绍 1.1 摘要:本文重点关注开发现代、高效、轻量级的模型来进行密集预测,同时权衡参数、FLOP 和性能。 反向残差块(IRB)作为轻量级 CNN 的基础设施,但基于注意力的研究尚未认识到对应的部分。 这项工作从统一的角度重新思考高效IRB和Transformer有效组件的轻量级…

国际版游戏陪练源码电竞系统源码支持Android+IOS+H5

🎮电竞之路的得力助手 一、引言:电竞新纪元,陪练小程序助力成长 在电竞热潮席卷全球的今天,每一个电竞爱好者都渴望在竞技场上脱颖而出。然而,独自一人的游戏之路往往充满了挑战和困难。幸运的是,国际版游…

Flutter框架高阶——Window应用程序设置窗体窗口背景完全透明

文章目录 1.修改 main.cpp1)C 与 Win32 API2)EnableTransparency()3)中文注释 2.编写 Flutter 代码1)bitsdojo_window2)window_manager3)区别对比4)同时使用(1)设置初始化…