吴恩达机器学习 第三课 week1 无监督学习算法(上)

目录

01 学习目标

02 无监督学习

03 K-means聚类算法

3.1 K-means聚类算法原理

3.2 k-means算法实现

3.3 利用k-means算法压缩图片

04 总结 


01 学习目标

   (1)了解无监督学习算法

   (2)掌握K-means聚类算法实现步骤

   (3)利用K-means聚类算法压缩图片

02 无监督学习

      概念:根据未被标记的训练样本解决模式识别或结构问题的算法,为无监督学习算法。

      主要算法:

      应用(摘自“文心一言”):

(1)数据挖掘

  • 聚类分析:对大规模的客户数据进行聚类,发现不同特征的客户群体,为精细化营销和个性化推荐提供支持。
  • 异常检测:无监督学习可以识别数据中的异常点,帮助企业发现潜在的风险因素。
  • 关联规则挖掘:发现不同产品之间的关联性,为商品搭配和交叉销售提供依据

(2)自然语言处理

  • 主题模型:从大规模文本数据中提取主题和话题,为舆情分析和信息检索提供支持。
  • 情感分析:可以挖掘文本中的情感倾向和情绪色彩,为舆情监控和口碑管理提供参考。
  • 文本聚类:可以对文本数据进行聚类分析,为信息检索和文本分类提供支持。

(3)社交网络分析社区发现)通过聚类和网络分析揭示社交网络的组织结构和信息传播模式。

(4)推荐系统(用户行为分析):可以分析用户的历史行为数据,发现用户的兴趣和行为模式,从而为用户提供个性化的推荐结果。

(5)自动驾驶(环境和道路感知):无监督学习用于对传感器数据进行聚类和降维,提取出道路、车辆和行人等重要特征,以支持自动驾驶决策和控制。

(6)计算机视觉(图像分割):可以对图像中的像素进行聚类,实现图像的自动分割,为对象识别、图像分析等进一步处理提供支持。(特征学习):无监督学习能够从图像数据中学习更高层次的特征表示,提高图像识别和分类的准确性和鲁棒性。

(7)降维(数据处理):无监督学习算法如主成分分析(PCA)和t-SNE等,用于降低数据的维度,减少数据中的冗余信息,提高数据的可视化、处理和分析效率。

(8)生成模型(数据生成):无监督学习可以生成新的数据,例如,通过从一个概率分布中学习数据的分布特征,生成新的图像、文本或语音数据。

03 K-means聚类算法

      下面,将采用jupyter notebook实现K-means算法,并将其用于图像压缩。

3.1 K-means聚类算法原理

       算法步骤:

       ①,假设n个类的质心

       ②,计算各points(数据点)到质心的距离,并将points分配给最近的质心

c^{(i)}:=j\; that\;minimizes\;||x^{(i)}-\mu _{j}||^2

        c ^{(i)}:=j 表示第i个点距离第j个质心最近, x ^{(i)} 是第i个点的坐标, \mu _j是第j个质心的坐标。上式会返回质心索引号列表。通俗地讲,给每个点贴个标签,标签上是距离其最近的质心编号,即:如果第1~3个点分别距离第2、0、1个质心最近,则返回列表[2 0 1]。

       ③,根据第②步分配结果重新计算质心

\mu_k=\frac{1}{|C_k|}\sum x^{(i)}

        \mu_k为第k个质心的坐标, C_k 为分配到第k个质心的点集合,|C_k|为该集合点的数量。上式会返回质心坐标的列表。通俗地讲,上式计算的结果为质心与所属点集合的平均距离,即:如果有10个点分配给了第1个质心,\mu_1就是这10个点到该质心的平均距离。

       ④,重复第②和③步,直至质心位置不再变化,聚类结束(如下图)

       聚类的结果受初始质心的影响,因此,可以多次随机假设质心进行计算,最终取cost最小的计算结果。

3.2 k-means算法实现

    (1)导入计算模块

import numpy as np
import matplotlib.pyplot as plt
from utils import *

%matplotlib inline

     (2)定义距离计算函数

def find_closest_centroids(X, centroids):

    # 质心索引
    idx = np.zeros(X.shape[0], dtype=int)

    for i in range(len(X)):
        distances = np.sum((X[i] - centroids) ** 2, axis=1)
        idx[i] = np.argmin(distances)
    
    return idx

     (3)定义质心坐标计算函数

def compute_centroids(X, idx, K):
    
    m, n = X.shape
    
    # 质心坐标
    centroids = np.zeros((K, n))
    
    for k in range(K):
        points = X[idx == k]
        centroids[k] = np.mean(points, axis=0) 
    
    return centroids

     (4)定义k-means执行函数

def run_kMeans(X, initial_centroids, max_iters=10, plot_progress=False):
    
    m, n = X.shape
    K = initial_centroids.shape[0]
    centroids = initial_centroids
    previous_centroids = centroids    
    idx = np.zeros(m)
    
    # 开始执行K-Means
    for i in range(max_iters):
        # 过程输出
        print("K-Means iteration %d/%d" % (i, max_iters-1))
        # 分配points
        idx = find_closest_centroids(X, centroids)
        # 结果可视化
        if plot_progress:
            plot_progress_kMeans(X, centroids, previous_centroids, idx, K, i)
            previous_centroids = centroids  
        # 计算质心坐标
        centroids = compute_centroids(X, idx, K)
    plt.show() 
    return centroids, idx

     (5) 开始聚类

X = load_data() # 加载数据

initial_centroids = np.array([[3,3],[6,1],[8,5]]) # 设置初始质心坐标
K = 3          # 质心个数

max_iters = 6  # 迭代次数

centroids, idx = run_kMeans(X, initial_centroids, max_iters, plot_progress=True)

       运行以上代码,结果如下:

      

3.3 利用k-means算法压缩图片

      从网上下载了1张色彩鲜明的图片,利用3.2节的函数,开始压缩吧!

      (1)定义质心随机生成函数

def kMeans_init_centroids(X, K):
    
    # 随机重新排序索引
    randidx = np.random.permutation(X.shape[0])
    
    # 选择前K个样本作为质心
    centroids = X[randidx[:K]]
    
    return centroids

     randidx = np.random.permutation(X.shape[0]):使用NumP的 np.random.permutation 函数来随机重新排序 X 的行索引(即样本的索引)。这样做是为了在选择质心时,样本是随机选取的,而不是简单地按顺序选取。

centroids = X[randidx[:K]]:从随机重新排序的索引 randidx 中选择前 K 个索引,并使用这些索引从 X 中选择相应的样本作为初始质心。) 

       (2)读取图片,并打印图片信息

original_img = plt.imread('./images/pic.jpg')
plt.imshow(original_img)
print("Shape of original_img is:", original_img.shape)

        运行以上代码,结果如下:

           

             Shape of original_img is: (400, 600, 3) 

     (3)图片归一化

# matplotlib处理对象为int或float,故将像素归一化至范围0 - 1
original_img = original_img / 255

# K-means处理对象为矩阵,故将图片转为 m x 3 矩阵,m=400*600=240,000
X_img = np.reshape(original_img, (original_img.shape[0] * original_img.shape[1], 3))

     (4)图片压缩

# 执行 K-Means 算法
# 下面设置质心数和迭代数,可多次试算
K = 6                       
max_iters = 10               

# 随机生成初始质心 
initial_centroids = kMeans_init_centroids(X_img, K) 
# 开始压缩
centroids, idx = run_kMeans(X_img, initial_centroids, max_iters) 

# 取图片具有代表性的前K个质心颜色,代替原图
X_recovered = centroids[idx, :] 

# 将图片转为三维
X_recovered = np.reshape(X_recovered, original_img.shape) 

      (5)图片可视化

fig, ax = plt.subplots(1,2, figsize=(8,8))
plt.axis('off')

ax[0].imshow(original_img)
ax[0].set_title('Original')
ax[0].set_axis_off()

ax[1].imshow(X_recovered)
ax[1].set_title('Compressed with %d colours'%K)
ax[1].set_axis_off()

      运行以上代码,结果为:

       压缩原理:

       首先确定6个初始质心,利用k-means算法聚类到最能代表该图片的6类颜色,将所有像素点分配给这6个“质心”。最终,将采用这个6类颜色作为该图片的代表色。
       
       小知识:RGB模式有3个颜色通道(red,green,blue),每个通道有2^8=256种颜色,因此,每个像素点需要24位(3*8 bit)。

       原始图像尺寸为400*600,共240,000个像素点。压缩前原图总位数为400*600*24=5,760,000 bit;压缩后采用6种颜色的字典来存储额外的空间,每种颜色需要24位,所占空间为6*24=144 bit,图像的240,000个像素点每个点占位4 bit(颜色质心≤16时均采用4个占位,即2^4=16)。因此,最终使用的位数为16*24 + 400*600*4=960,144 bit,这意味着可以将原始图像压缩约6倍。

04 总结 

     (1)无监督学习算法的一个缺点即费力耗时,相较监督学习,需要多次迭代计算。

     (2)k-means算法受初始质心影响大,除了本文的生成方法,还有K-means++等更有效的初始化方法。

    (3)经过k-means算法压缩的图片,图片各像素点颜色数量由256种减少至k种。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/725697.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

it职业生涯规划系统的设计

管理员账户功能包括:系统首页,个人中心,管理员管理,职业介绍管理,答题管理,试题管理,基础数据管理 前台账户功能包括:系统首页,个人中心,在线答题&#xff0…

基于SSM+Jsp的书店仓库管理系统

摘要:仓库作为储存货物的核心功能之一,在整个仓储中具有非常重要的作用,是社会物质生产的必要条件。良好的仓库布局环境能够对货物进入下一个环节前的质量起保证作用,能够为货物进入市场作好准备,在设计中我们根据书店…

基于matlab的RRT算法路径规划(附带案例源码)

文章中的所有案例均为博主手动复现,用于记录博主学习路径规划的过程,如有不妥,欢迎在评论区交流 目录 1 标准RRT1.1 算法原理1.2 演示 2 GBRRT2.1 算法原理2.2 算法演示 3 RRT-STAR3.1 算法原理3.2 算法演示 4 RRT-CONNECT4.1 算法原理4.2 算…

实现农业现代化与乡村振兴战略的融合发展方案

政策背景 “一号文件”精神贯彻 数字乡村试点精神全面实施 工业化思维谋划农业发展 数字乡村建设纳入县级“十四五”发展规划 乡村振兴实施目标 2020年:乡村振兴取得重要进展 2035年:乡村振兴取得决定性进展,农业农村现代化基本实现 205…

在 Ubuntu 18.04.4 LTS上安装 netmap

文章目录 步骤运行配置文件编译安装使用netmap 步骤 sudo su sudo apt-get update sudo apt install build-essential sudo apt-get install -y git sudo apt-get install -y linux-headers-$(uname -r)rootVM-20-6-ubuntu:/home/ubuntu/netmap/LINUX# git clone https://gith…

反激开关电源EMI电路选型及计算

EMI :开关电源对电网或者其他电子产品的干扰 EMI :传导与辐射 共模电感的滤波电路,La和Lb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相 同(绕制反向)。 这样,当电路中的正常电流(差模&…

回归算法详解

回归算法详解 回归分析是一类重要的机器学习方法,主要用于预测连续变量。本文将详细讲解几种常见的回归算法,包括线性回归、岭回归、Lasso 回归、弹性网络回归、决策树回归和支持向量回归(SVR),并展示它们的特点、应用…

Ubuntu-基础工具配置

基础工具配置 点击左下角 在弹出界面中点击 以下命令都是在上面这个界面执行(请大家注意空格) 命令输入完后,回车键就是执行,系统会提示输入密码(就是你登录的密码) 1.安装net工具 :(ifconfi…

uniapp 微信小程序自定义分享图片

场景&#xff1a;微信小程序用户&#xff0c;点击小程序里商品的分享按钮时&#xff0c;想要不同的商品展示不用的分享内容&#xff0c;比如分享图片上展示商品的图片、价格等信息。分享的UI图如下&#xff1a; 实现方法&#xff1a; 1. 分享按钮&#xff1a;<button open-…

Mysten Labs宣布推出Walrus:一种去中心化存储和数据可用性协议

Walrus是为区块链应用和自主代理提供的创新去中心化存储网络。Walrus存储系统今天以开发者预览版的形式发布&#xff0c;面向Sui开发者征求反馈意见&#xff0c;并预计很快会向其他Web3社区广泛推广。 通过采用纠删编码创新技术&#xff0c;Walrus能够快速且稳健地将非结构化数…

Day10—Spark SQL基础

Spark SQL介绍 ​ Spark SQL是一个用于结构化数据处理的Spark组件。所谓结构化数据&#xff0c;是指具有Schema信息的数据&#xff0c;例如JSON、Parquet、Avro、CSV格式的数据。与基础的Spark RDD API不同&#xff0c;Spark SQL提供了对结构化数据的查询和计算接口。 Spark …

人工智能指数报告

2024人工智能指数报告&#xff08;一&#xff09;&#xff1a;研发 前言 全面分析人工智能的发展现状。 从2017年开始&#xff0c;斯坦福大学人工智能研究所&#xff08;HAI&#xff09;每年都会发布一份人工智能的研究报告&#xff0c;人工智能指数报告&#xff08;AII&…

网络安全:入侵检测系统的原理与应用

文章目录 网络安全&#xff1a;入侵检测系统的原理与应用引言入侵检测系统简介IDS的工作原理IDS的重要性结语 网络安全&#xff1a;入侵检测系统的原理与应用 引言 在我们的网络安全系列文章中&#xff0c;我们已经涵盖了从SQL注入到端点保护的多个主题。本篇文章将探讨入侵检…

Apple - Authorization Services Programming Guide

本文翻译整理自&#xff1a;Authorization Services Programming Guide&#xff08;更新日期&#xff1a;2011-10-19 https://developer.apple.com/library/archive/documentation/Security/Conceptual/authorization_concepts/01introduction/introduction.html#//apple_ref/d…

探究布局模型:从LayoutLM到LayoutLMv2与LayoutXLM

LAYOUT LM 联合建模文档的layout信息和text信息&#xff0c; 预训练 文档理解模型。 模型架构 使用BERT作为backbone&#xff0c; 加入2-D绝对位置信息&#xff0c;图像信息 &#xff0c;分别捕获token在文档中的相对位置以及字体、文字方向、颜色等视觉信息。 2D位置嵌入 …

天地图 uniapp使用笔记

官网地址&#xff1a;天地图API 效果&#xff1a; <template><view><!-- 显示地图的DOM节点 --><view id"container" class"content"></view><!-- END --><!-- 数据显示 --><h3>城市名称(IP属地)&#x…

rollup学习笔记

一直使用的webpack,最近突然想了解下rollup,就花点时间学习下. 一,什么是rollup? rollup 是一个 JavaScript 模块打包器&#xff0c;可以将小块代码编译成大块复杂的代码,比如我们的es6模块化代码,它就可以进行tree shaking,将无用代码进行清除,打包出精简可运行的代码包. 业…

[Linux] 系统管理

全局配置文件 用户个性化配置 配置文件的种类 alias命令和unalias命令 进程管理 进程表

AI视频智能监管赋能城市管理:打造安全有序的城市环境

一、方案背景 随着城市化进程的加速和科技的飞速发展&#xff0c;街道治安问题日益凸显&#xff0c;治安监控成为维护社会稳定和保障人民安全的重要手段。当前&#xff0c;许多城市已经建立了较为完善的治安监控体系&#xff0c;但仍存在一些问题。例如&#xff0c;监控设备分…

基于PHP的奶茶商城系统

有需要请加文章底部Q哦 可远程调试 基于PHP的奶茶商城系统 一 介绍 此奶茶商城系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;ajax实现数据交换。系统角色分为用户和管理员。系统在原有基础上添加了糖度的选择。 技术栈 phpmysqlajaxphpstudyvscode 二 功能 用户…