卷积神经网络(CNN)理解

1、引言(卷积概念)

    在介绍CNN中卷积概念之前,先介绍一个数字图像中“边缘检测edge detection”案例,以加深对卷积的认识。图中为大小8X8的灰度图片,图片中数值表示该像素的灰度值。像素值越大,颜色越亮,所以为了示意,我们把右边小像素的地方画成深色,图的中间两个颜色的分界线就是我们要检测的边界。

    该怎么检测边界呢?我们可以设计这样的一个 滤波器(filter,也称为kernel),大小3×3:

      然后,我们用这个filter,往我们的图片上“盖”,覆盖一块跟filter一样大的区域之后,对应元素相乘,然后求和。计算一个区域之后,就向其他区域挪动,接着计算,直到把原图片的每一个角落都覆盖到了为止。这个过程就是 “卷积”。 (我们不用管卷积在数学上到底是指什么运算,我们只用知道在CNN中是怎么计算的。) 这里的“挪动”,就涉及到一个步长,假如我们的步长是1,那么覆盖了一个地方之后,就挪一格,容易知道,总共可以覆盖6×6个不同的区域。

      通过上述操作,发现边界被准确探测出。

      卷积神经网络(CNN)中的卷积,就是通过一个个的filter,不断地提取特征,从局部的特征到总体的特征,从而进行图像识别等等功能。

      那么问题来了,我们怎么可能去设计这么多各种各样的filter?首先,我们都不一定清楚对于一大堆图片,我们需要识别哪些特征,其次,就算知道了有哪些特征,想真的去设计出对应的filter,恐怕也并非易事,要知道,特征的数量可能是成千上万的。

      其实学过神经网络之后,我们就知道,这些filter,根本就不用我们去设计,每个filter中的各个数字,不就是参数吗,我们可以通过大量的数据,来让机器自己去“学习”这些参数嘛。这就是CNN的原理。

2、CNN基本概念

      在理解CNN中卷积概念后,有一些基本概念需要理解,包括padding填白、stride步长、pooling池化、对多通道图片卷积。

2.1 padding填白

      从上面的引子中,我们可以知道,原图像在经过filter卷积之后,变小了,从(8,8)变成了(6,6)。假设我们再卷一次,那大小就变成了(4,4)了。

      这样有啥问题呢? 主要有两个问题: 每次卷积,图像都缩小,这样卷不了几次就没了;  相比于图片中间的点,图片边缘的点在卷积中被计算的次数很少。这样的话,边缘的信息就易于丢失。

       为了解决这个问题,我们可以采用padding的方法。我们每次卷积前,先给图片周围都补一圈空白,让卷积之后图片跟原来一样大,同时,原来的边缘也被计算了更多次。

      比如,我们把(8,8)的图片给补成(10,10),那么经过(3,3)的filter之后,就是(8,8),没有变。

      我们把上面这种“让卷积之后的大小不变”的padding方式,称为 “Same”方式, 把不经过任何填白的,称为 “Valid”方式。这个是我们在使用一些框架的时候,需要设置的超参数。

2.2 stride步长

      前面我们所介绍的卷积,都是默认步长是1,但实际上,我们可以设置步长为其他的值。 比如,对于(8,8)的输入,我们用(3,3)的filter, 如果stride=1,则输出为(6,6); 如果stride=2,则输出为(3,3)。

      举栗子:

  • 栗子1:stride=1,padding=0(遍历采样,无填充:padding=‘valid’)
  • 栗子2:stride=1,padding=1(遍历采样,有填充:padding=‘same’)
  • 栗子3:stride=2,padding=0(降采样,无填充:尺寸缩小二点五分之一)
  • 栗子4:stride=2,padding=1(降采样,有填充;尺寸缩小二分之一)

      Stride的作用:是成倍缩小尺寸,而这个参数的值就是缩小的具体倍数,比如步幅为2,输出就是输入的1/2;步幅为3,输出就是输入的1/3。


栗子1:  一个特征图尺寸为4*4的输入,使用3*3的卷积核,步幅=1,填充=0
        输出的尺寸=(4 - 3)/1 + 1 = 2

栗子2:  一个特征图尺寸为5*5的输入,使用3*3的卷积核,步幅=1,填充=1
        输出的尺寸=(5 + 2*1 - 3)/1 + 1 = 5


栗子3:  一个特征图尺寸为5*5的输入, 使用3*3的卷积核,步幅=2,填充=0
         输出的尺寸=(5-3)/2 + 1 = 2


栗子4:  一个特征图尺寸为6*6的输入, 使用3*3的卷积核,步幅=2,填充=1
         输出的尺寸=(6 + 2*1 - 3)/2 + 1 = 2.5 + 1 = 3.5 向下取整=3
         (降采样:边长减少1/2)

      在PyTorch中,卷积层的步幅(stride)也是一个一维张量,通常包含两个或四个元素,具体取决于卷积层的类型(2D或3D卷积)。对于2D卷积层,步幅通常是一个包含两个元素的张量,格式为 [stride_height, stride_width]。对于3D卷积或其他更复杂的层,步幅可能包含四个元素,格式为 [stride_batch, stride_height, stride_width, stride_channel],但这种情况较少见,因为通常不会在批处理维度或通道维度上应用步幅。

import torch.nn as nn

# 定义一个2D卷积层,步幅为(2, 2)
conv_layer = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=(2, 2), padding=1)

      在这个例子中,stride=(2, 2) 表示卷积核在高度和宽度方向上每次移动两个像素。这种设置通常用于减少特征图的尺寸,实现下采样。

 2.3 pooling池化

      这个pooling,是为了提取一定区域的主要特征,并减少参数数量,防止模型过拟合。 比如下面的MaxPooling,采用了一个2×2的窗口,并取stride=2:

      

      除了MaxPooling,还有AveragePooling,顾名思义就是取那个区域的平均值。

2.4 对多通道(channels)图片的卷积

      这个需要单独提一下。彩色图像,一般都是RGB三个通道(channel)的,因此输入数据的维度一般有三个:(长,宽,通道)。 比如一个28×28的RGB图片,维度就是(28,28,3)。

      前面的引子中,输入图片是2维的(8,8),filter是(3,3),输出也是2维的(6,6)。

      如果输入图片是三维的呢(即增多了一个channels),比如是(8,8,3),这个时候,我们的filter的维度就要变成(3,3,3)了,它的最后一维要跟输入的channel维度一致。 这个时候的卷积,是三个channel的所有元素对应相乘后求和,也就是之前是9个乘积的和,现在是27个乘积的和。因此,输出的维度并不会变化。还是(6,6)。

      但是,一般情况下,我们会 使用多个filters同时卷积,比如,如果我们同时使用4个filter的话,那么 输出的维度则会变为(6,6,4)。

     图中的输入图像是(8,8,3),filter有4个,大小均为(3,3,3),得到的输出为(6,6,4)。

其实,如果套用我们前面学过的神经网络的符号来看待CNN的话,

  • 我们的输入图片就是X,shape=(8,8,3);
  • 4个filters其实就是第一层神金网络的参数W1,shape=(3,3,3,4),这个4是指有4个filters;
  • 我们的输出,就是Z1,shape=(6,6,4);
  • 后面其实还应该有一个激活函数,比如relu,经过激活后,Z1变为A1,shape=(6,6,4);

所以,在前面的图中,我加一个激活函数,给对应的部分标上符号,就是这样的:

3、CNN的结构组成

      上面我们已经知道了卷积(convolution)、池化(pooling)以及填白(padding)是怎么进行的,接下来我们就来看看CNN的整体结构,它包含了3种层(layer):

3.1 卷积层(Convolutional layer, conv)

      由滤波器filters和激活函数构成。 一般要设置的超参数包括filters的数量、大小、步长,以及padding是“valid”还是“same”。当然,还包括选择什么激活函数。

3.2 Pooling layer(池化层-pool)

     这里里面没有参数需要我们学习,因为这里里面的参数都是我们设置好了,要么是Maxpooling,要么是Averagepooling。 需要指定的超参数,包括是Max还是average,窗口大小以及步长。 通常,我们使用的比较多的是Maxpooling,而且一般取大小为(2,2)步长为2的filter,这样,经过pooling之后,输入的长宽都会缩小2倍,channels不变。

3.3 Fully Connected layer(全链接层-FC)

      全连接层(Fully Connected Layer),也称为密集层(Dense Layer),是神经网络中的一层,其中每个神经元都与前一层的所有神经元相连接。全连接层通常用于神经网络的最后几层,将学到的特征映射到最终的输出,例如分类任务的类别数。

      在全连接层中,每个神经元都有一组参数(权重和偏置),这些参数用于对输入数据进行线性变换,然后通过激活函数进行非线性变换。全连接层的输出是输入数据和权重矩阵的线性组合,再加上偏置向量。

参考博客:

【1】多通道图片的卷积_多通道卷积过程-CSDN博客

【2】CNN中stride(步幅)和padding(填充)的详细理解_cnn stride-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/725131.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

IO流2.

字符流-->字符流的底层其实就是字节流 public class Stream {public static void main(String[] args) throws IOException {//1.创建对象并关联本地文件FileReader frnew FileReader("abc\\a.txt");//2.读取资源read()int ch;while((chfr.read())!-1){System.out…

集合面试题

目录 ①HashMap的理解?以及为什么要把链表转换为红黑树?②HashMap的put?③HashMap的扩容?④加载因子为什么是0.75?⑤modcount的作用?⑥HashMap与HashTable的区别?⑥HashMap中1.7和1.8的区别&am…

通过sql语句直接导出excel文件

SELECT column1 as 名字 FROM your_table INTO OUTFILE /path/to/your_file.csv FIELDS TERMINATED BY , ENCLOSED BY " LINES TERMINATED BY \n 这里的注意事项是,INTO OUTFILE 这后面的路径需要通过下面的SQL查出来 show variables like %secure%; 操作步骤…

SpringCloud Netflix和SpringCloud Alibaba核心组件

1.SpringCloud Netflix组件 1.1 Netflix Eureka-服务注册发现 Eureka 是一种用于服务发现 的组件,它是一个基于 REST 的服务,用于定位运行在 AWS 弹性计算云(EC2)中的中间层服务,以便它们可以相互通讯。 注册&#xf…

AMBA-CHI协议详解(三)

《AMBA 5 CHI Architecture Specification》 AMBA-CHI协议详解(一) AMBA-CHI协议详解(二) AMBA-CHI协议详解(三) AMBA-CHI协议详解(四) 文章目录 2.3.2 Write transactions2.3.2.1 …

【计算机网络体系结构】计算机网络体系结构实验-DNS模拟器实验

一、DNS模拟器实验 拓扑图 1. 服务器ip 2. 服务器填写记录 3. 客户端ip以及连接到DNS服务器 4. ping测试

《Fundamentals of Power Electronics》——绕组导体中的涡流

绕组导体中的涡流也会导致功率损耗。这可能导致铜耗大大超过上述公式预测的值。特殊的导体涡流机制被称为集肤效应和紧邻效应。这些机制在多层绕组的大电流导体中最为明显,特别是在高频变换器中。 下图说明了一个简单变压器绕组中的邻近效应。

Sqlite3数据库基本使用

一、基本概念 数据:能够输入计算机并能被计算机程序识别和处理的信息集合 数据库:长期存储在计算机内、有组织的、可共享的大量数据的集合 DBMS:位于用户与操作系统之间的一层数据管理软件,用于操纵和管理数据库 二、安装 在线…

Java 17的新特性

Java 17引入了多项新特性,以下是一些重要的更新: 增强的伪随机数生成器(JEP 356) Java 17为伪随机数生成器(PRNG)提供了新的接口类型和实现,包括可跳转的PRNG和另一类可拆分的PRNG算法&#xf…

06-操作元素

在前面的文章中重点介绍了一些元素的定位方法,定位到元素后,就需要操作元素了。本篇通过简单案例来介绍app应用中的一些常用操作。 一、案例介绍 下面列表中有四个字典,每个字典中的num1代表第一个操作数,num2代表第二个操作数&a…

LabVIEW电池管理系统测试平台

随着混合动力汽车技术的快速发展,对电池管理系统(BMS)的测试需求显著增加。利用LabVIEW软件开发了一款电池管理系统测试平台,通过模拟电池行为验证BMS的控制策略,从而降低成本、缩短开发周期,并提高整车的能…

js文件导出功能

效果图&#xff1a; 代码示例&#xff1a; <!DOCTYPE html> <html> <head lang"en"><meta charset"UTF-8"><title>html 表格导出道</title><script src"js/jquery-3.6.3.js"></script><st…

Qt打包成单独一个.exe文件运行

程序发布 1、首先找到你所运行的Qt编译器 2、然后去项目位置找到对应的release目录下的exe文件 3、将这个exe文件复制到一个单独的文件夹下&#xff0c;这里我放在E盘的demo下面 4、右键选择在终端打开PowerShell进入步骤1新建的demo目录内 5、windeployqt 项目名.exe windepl…

音视频入门基础:H.264专题(3)——EBSP, RBSP和SODB

音视频入门基础&#xff1a;H.264专题系列文章&#xff1a; 音视频入门基础&#xff1a;H.264专题&#xff08;1&#xff09;——H.264官方文档下载 音视频入门基础&#xff1a;H.264专题&#xff08;2&#xff09;——使用FFmpeg命令生成H.264裸流文件 音视频入门基础&…

PLC模拟量和数字量到底有什么区别?

PLC模拟量和数字量的区别 在工业自动化领域&#xff0c;可编程逻辑控制器&#xff08;PLC&#xff09;是控制各种机械设备和生产过程的核心组件。PLC通过处理模拟量和数字量来实现对工业过程的精确控制。了解模拟量和数字量的区别对于设计高效、可靠的自动化系统至关重要。 1. …

[面试题]消息队列

[面试题]Java【基础】[面试题]Java【虚拟机】[面试题]Java【并发】[面试题]Java【集合】[面试题]MySQL[面试题]Maven[面试题]Spring Boot[面试题]Spring Cloud[面试题]Spring MVC[面试题]Spring[面试题]MyBatis[面试题]Nginx[面试题]缓存[面试题]Redis[面试题]消息队列 什么是…

异构集成封装类型2D、2.1D、2.3D、2.5D和3D封装技术

异构集成封装类型&#xff1a;2D、2.1D、2.3D、2.5D和3D封装详解 简介随着摩尔定律的放缓&#xff0c;半导体行业越来越多地采用芯片设计和异构集成封装来继续推动性能的提高。这种方法是将大型硅芯片分割成多个较小的芯片&#xff0c;分别进行设计、制造和优化&#xff0c;然后…

如何通过自己编写Jmeter函数

在Jmeter的函数助手里&#xff0c;有很多内置的函数&#xff0c;比如Random、UUID、time等等。使用这些函数可以快速帮我们生成某些数据&#xff0c;进行一些逻辑处理。用起来非常的方便。 但是在实际接口测试过程中&#xff0c;有很多的需求&#xff0c;Jmeter内置的函数可能…

决策树概念

图例 概念 决策树基本上就是对经验的总结 决策树的构成&#xff0c;分为两个阶段。构造和剪枝 构造 概念 构造就是生成一颗完整的决策树。构造的过程就是选择什么属性作为节点的过程 构造过程&#xff0c;会存在3种节点 根节点&#xff1a;就是树的最顶端&#xff0c;最…

四十九、openlayers官网示例Immediate Rendering (Geographic)——在地图上绘制星空动画效果

官网demo地址&#xff1a; Immediate Rendering (Geographic) 首先先创建1000个随机点&#xff0c;创建点对象。 const n 1000;const geometries new Array(n);for (let i 0; i < n; i) {const lon 360 * Math.random() - 180;const lat 180 * Math.random() - 90;ge…