基于STM32和人工智能的智能楼宇安防系统

目录

  1. 引言
  2. 环境准备
  3. 智能楼宇安防系统基础
  4. 代码实现:实现智能楼宇安防系统
    • 4.1 数据采集模块
    • 4.2 数据处理与分析
    • 4.3 控制系统
    • 4.4 用户界面与数据可视化
  5. 应用场景:智能楼宇安防管理与优化
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

随着物联网和人工智能技术的发展,智能楼宇安防系统在提高建筑安全性和管理效率方面发挥着重要作用。本文将详细介绍如何在STM32嵌入式系统中结合人工智能技术实现一个智能楼宇安防系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  • 开发板:STM32F407 Discovery Kit
  • 调试器:ST-LINK V2或板载调试器
  • 摄像头:用于视频监控
  • PIR传感器:用于检测人体运动
  • 门磁传感器:用于检测门窗开关状态
  • 报警器:如蜂鸣器或警报器
  • 显示屏:如OLED显示屏
  • 按键或旋钮:用于用户输入和设置
  • 电源:12V或24V电源适配器

软件准备

  • 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  • 调试工具:STM32 ST-LINK Utility或GDB
  • 库和中间件:STM32 HAL库、TensorFlow Lite
  • 人工智能模型:用于视频和传感器数据分析

安装步骤

  1. 下载并安装 STM32CubeMX
  2. 下载并安装 STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序
  5. 下载并集成 TensorFlow Lite 库

3. 智能楼宇安防系统基础

控制系统架构

智能楼宇安防系统由以下部分组成:

  • 数据采集模块:用于采集视频和传感器数据(运动、门窗状态等)
  • 数据处理与分析:使用人工智能算法对采集的数据进行分析和预测
  • 控制系统:根据分析结果控制报警器和其他设备
  • 显示系统:用于显示安防状态和系统信息
  • 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过摄像头、PIR传感器和门磁传感器采集安防数据,并使用人工智能算法进行分析和预测,实时显示和记录安防状态,实现智能化的楼宇安防管理。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态和报警信息。

4. 代码实现:实现智能楼宇安防系统

4.1 数据采集模块

配置PIR传感器
使用STM32CubeMX配置GPIO接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

初始化PIR传感器并读取数据:

#include "stm32f4xx_hal.h"

#define PIR_PIN GPIO_PIN_0
#define GPIO_PORT GPIOA

void GPIO_Init(void) {
    __HAL_RCC_GPIOA_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = PIR_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}

uint8_t Read_PIR(void) {
    return HAL_GPIO_ReadPin(GPIO_PORT, PIR_PIN);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();

    uint8_t pir_status;

    while (1) {
        pir_status = Read_PIR();
        HAL_Delay(1000);
    }
}

配置门磁传感器
使用STM32CubeMX配置GPIO接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

初始化门磁传感器并读取数据:

#include "stm32f4xx_hal.h"

#define DOOR_PIN GPIO_PIN_1
#define GPIO_PORT GPIOA

void GPIO_Init(void) {
    __HAL_RCC_GPIOA_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = DOOR_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}

uint8_t Read_Door(void) {
    return HAL_GPIO_ReadPin(GPIO_PORT, DOOR_PIN);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();

    uint8_t door_status;

    while (1) {
        door_status = Read_Door();
        HAL_Delay(1000);
    }
}

配置摄像头
使用STM32CubeMX配置DVP或SPI接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的DVP或SPI引脚,设置为相应的模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

初始化摄像头并采集视频数据:

#include "stm32f4xx_hal.h"
#include "camera.h"

void Camera_Init(void) {
    // 初始化摄像头
}

void Capture_Image(uint8_t* buffer) {
    // 获取摄像头图像数据
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    Camera_Init();

    uint8_t image_buffer[IMAGE_SIZE];

    while (1) {
        Capture_Image(image_buffer);
        HAL_Delay(1000);
    }
}

4.2 数据处理与分析

集成TensorFlow Lite进行数据分析
使用STM32CubeMX配置必要的接口,确保嵌入式系统能够加载和运行TensorFlow Lite模型。

代码实现:

初始化TensorFlow Lite:

#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "model_data.h"  // 人工智能模型数据

namespace {
    tflite::MicroErrorReporter micro_error_reporter;
    tflite::MicroInterpreter* interpreter = nullptr;
    TfLiteTensor* input = nullptr;
    TfLiteTensor* output = nullptr;
    constexpr int kTensorArenaSize = 2 * 1024;
    uint8_t tensor_arena[kTensorArenaSize];
}

void AI_Init(void) {
    tflite::InitializeTarget();

    static tflite::MicroMutableOpResolver<10> micro_op_resolver;
    micro_op_resolver.AddFullyConnected();
    micro_op_resolver.AddSoftmax();

    const tflite::Model* model = tflite::GetModel(model_data);
    if (model->version() != TFLITE_SCHEMA_VERSION) {
        TF_LITE_REPORT_ERROR(&micro_error_reporter,
                             "Model provided is schema version %d not equal "
                             "to supported version %d.",
                             model->version(), TFLITE_SCHEMA_VERSION);
        return;
    }

    static tflite::MicroInterpreter static_interpreter(
        model, micro_op_resolver, tensor_arena, kTensorArenaSize,
        &micro_error_reporter);
    interpreter = &static_interpreter;

    interpreter->AllocateTensors();

    input = interpreter->input(0);
    output = interpreter->output(0);
}

void AI_Run_Inference(uint8_t* image_data, float* output_data) {
    // 拷贝图像数据到模型输入张量
    for (int i = 0; i < input->dims->data[0]; ++i) {
        input->data.uint8[i] = image_data[i];
    }

    // 运行模型推理
    if (interpreter->Invoke() != kTfLiteOk) {
        TF_LITE_REPORT_ERROR(&micro_error_reporter, "Invoke failed.");
        return;
    }

    // 拷贝输出数据
    for (int i = 0; i < output->dims->data[0]; ++i) {
        output_data[i] = output->data.f[i];
    }
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    AI_Init();
    Camera_Init();

    uint8_t image_buffer[IMAGE_SIZE];
    float output_data[OUTPUT_SIZE];

    while (1) {
        // 采集图像数据
        Capture_Image(image_buffer);

        // 运行AI推理
        AI_Run_Inference(image_buffer, output_data);

        // 根据AI输出执行相应的操作
        HAL_Delay(1000);
    }
}

4.3 控制系统

配置GPIO控制报警器
使用STM32CubeMX配置GPIO:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的GPIO引脚,设置为输出模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

初始化报警器控制引脚:

#include "stm32f4xx_hal.h"

#define ALARM_PIN GPIO_PIN_2
#define GPIO_PORT GPIOB

void GPIO_Init(void) {
    __HAL_RCC_GPIOB_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = ALARM_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}

void Control_Alarm(uint8_t state) {
    HAL_GPIO_WritePin(GPIO_PORT, ALARM_PIN, state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();
    AI_Init();
    Camera_Init();

    uint8_t image_buffer[IMAGE_SIZE];
    float output_data[OUTPUT_SIZE];

    while (1) {
        // 采集图像数据
        Capture_Image(image_buffer);

        // 运行AI推理
        AI_Run_Inference(image_buffer, output_data);

        // 根据AI输出控制报警器
        uint8_t alarm_state = output_data[0] > 0.5; // 假设模型输出0代表是否报警
        Control_Alarm(alarm_state);

        HAL_Delay(1000);
    }
}

4.4 用户界面与数据可视化

配置OLED显示屏
使用STM32CubeMX配置I2C接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

首先,初始化OLED显示屏:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "oled.h"

void Display_Init(void) {
    OLED_Init();
}

然后实现数据展示函数,将安防状态数据显示在OLED屏幕上:

void Display_Security_Status(float* output_data) {
    char buffer[32];
    sprintf(buffer, "Alarm: %s", output_data[0] > 0.5 ? "ON" : "OFF");
    OLED_ShowString(0, 0, buffer);
}

在主函数中,初始化系统并开始显示数据:

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();
    Camera_Init();
    AI_Init();
    Display_Init();

    uint8_t image_buffer[IMAGE_SIZE];
    float output_data[OUTPUT_SIZE];

    while (1) {
        // 采集图像数据
        Capture_Image(image_buffer);

        // 运行AI推理
        AI_Run_Inference(image_buffer, output_data);

        // 显示安防状态数据和AI结果
        Display_Security_Status(output_data);

        // 根据AI结果控制报警器
        uint8_t alarm_state = output_data[0] > 0.5;
        Control_Alarm(alarm_state);

        HAL_Delay(1000);
    }
}

5. 应用场景:智能楼宇安防管理与优化

办公楼宇

智能楼宇安防系统可以用于办公楼宇,通过实时监控和分析,保障办公室的安全。

住宅小区

在住宅小区,智能楼宇安防系统可以为住户提供安全保障,及时检测入侵和异常情况。

商业建筑

智能楼宇安防系统在商业建筑中可以帮助管理人员进行安防监控,保障财产安全。

工业园区

在工业园区,智能楼宇安防系统可以用于监控生产设施和仓库,防止盗窃和破坏。

 

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

6. 问题解决方案与优化

常见问题及解决方案

  1. 传感器数据不准确:确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。

    • 解决方案:检查传感器与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。同时,定期对传感器进行校准,确保数据准确。
  2. 设备响应延迟:优化控制逻辑和硬件配置,减少设备响应时间,提高系统反应速度。

    • 解决方案:优化传感器数据采集和处理流程,减少不必要的延迟。使用DMA(直接存储器访问)来提高数据传输效率,减少CPU负担。选择速度更快的处理器和传感器,提升整体系统性能。
  3. 显示屏显示异常:检查I2C通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

    • 解决方案:检查I2C引脚的连接是否正确,确保电源供电稳定。使用示波器检测I2C总线信号,确认通信是否正常。如有必要,更换显示屏或MCU。
  4. 摄像头图像模糊:确保摄像头镜头清洁,优化图像处理算法。

    • 解决方案:定期清洁摄像头镜头,防止灰尘和污垢影响图像质量。优化图像处理算法,提高图像清晰度和对比度。
  5. 电池续航时间短:优化系统功耗设计,提高电池续航时间。

    • 解决方案:使用低功耗模式(如STM32的STOP模式)降低系统功耗。选择容量更大的电池,并优化电源管理策略,减少不必要的电源消耗。

优化建议

  1. 数据集成与分析:集成更多类型的传感器数据,使用大数据分析和机器学习技术进行安防状态预测和优化。

    • 建议:增加更多环境和安全传感器,如烟雾传感器、气体传感器等。使用云端平台进行数据分析和存储,提供更全面的楼宇安防管理服务。
  2. 用户交互优化:改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。

    • 建议:使用高分辨率彩色显示屏,提供更丰富的视觉体验。设计简洁易懂的用户界面,让用户更容易操作。提供图形化的数据展示,如实时图表、视频监控等。
  3. 智能化控制提升:增加智能决策支持系统,根据历史数据和实时数据自动调整安防策略,实现更高效的楼宇安防管理。

    • 建议:使用人工智能技术分析安防数据,提供个性化的控制建议。结合历史数据,预测可能的入侵和异常情况,提前采取预防措施。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中结合人工智能技术实现智能楼宇安防系统,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的智能楼宇安防系统

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/724994.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

后端数据null前端统一显示成空

handleNullValues方法在封装请求接口返回数据时统一处理 // null 转 function handleNullValues(data) {// 使用递归处理多层嵌套的对象或数组function processItem(item) {if (Array.isArray(item)) {return item.map(processItem);} else if (typeof item object &&…

开源的语音合成项目-EdgeTTS,无需部署无需Key

前几天和大家分享了&#xff1a;全网爆火的AI语音合成工具-ChatTTS。 有很多小伙伴反应模型下载还有点麻烦~ 今天再给大家带来一款开源的语音合成 TTS 项目-EdgeTTS&#xff0c;相比ChatTTS&#xff0c;操作起来对小白更友好。 因为其底层是使用微软 Edge 的在线语音合成服务…

Java数据结构与算法——稀疏数组和队列

一、稀疏数组sparsearray数组 该二维数组的很多值是默认值0,因此记录了很多没有意义的数据&#xff0c;可以采用稀疏数组进行压缩 1.基本介绍: 当一个数组中大部分元素为0&#xff0c;或者为同一个值的数组时&#xff0c;可以使用稀疏数组来保存该数组。 稀疏数组的处理方法…

c++文件io,字符串io简单介绍

目录 c文件io 介绍 采用文件流对象操作文件的一般步骤 示例 注意点 利用字节流特性 字符串io 介绍 istringstream ostringstream 示例 c文件io 介绍 c根据文件内容的数据格式分为二进制文件和文本文件 基本上和c一样 c 标准库中有许多不同的标志 用于指定流对象的…

Ollama(docker)+ Open Webui(docker)+Comfyui

Windows 系统可以安装docker desktop 相对比较好用一点&#xff0c;其他的应该也可以 比如rancher desktop podman desktop 安装需要windows WSL 安装ollama docker docker run -d --gpusall -v D:\ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama 这里…

CI /CD学习

CI/CD概述 CI/CD 是持续集成和持续交付/部署的缩写&#xff0c;旨在简化并加快软件开发生命周期。 持续集成&#xff08;CI&#xff09;是指自动且频繁地将代码更改集成到共享源代码存储库中的做法。持续交付和/或持续部署&#xff08;CD&#xff09;是一个由两部分组成的过程…

Paper Reading: PAMS:通过参数化最大尺度量化超分辨率

PAMS: Quantized Super-Resolution via Parameterized Max Scale PAMS&#xff1a;通过参数化最大尺度量化超分辨率, ECCV 2020 paper: https://arxiv.org/pdf/2011.04212.pdf GitHub: https://github.com/colorjam/PAMS 摘要 深度卷积神经网络&#xff08;DCNNs&#xff09;…

HumanPlus——斯坦福ALOHA团队开源的人形机器人:融合影子学习技术、RL、模仿学习

前言 今天只是一个平常的日子&#xff0c;不过看到了两篇文章 一篇是《半年冒出近百家新公司&#xff0c;「具身智能」也有春天》 我看完之后转发到朋友圈&#xff0c;并评论道&#xff1a;让机器人翻一万个后空翻&#xff0c;不如让机器人打好一个螺钉&#xff0c;毕竟在目前…

Flutter第十三弹 路由和导航

目标&#xff1a; 1.Flutter怎么创建路由&#xff1f; 2.怎么实现路由跳转&#xff1f;页面返回&#xff1f; 一、路由 1.1 什么是路由&#xff1f; 路由(Route)在移动开发中通常指页面&#xff08;Page&#xff09;&#xff0c;在Android中通常指一个Activity。所谓路由管…

什么是Linux挂载

首先先说一下在Linux中一切皆文件&#xff08;硬件设备也是文件&#xff09;&#xff0c;所有文件都是存放在以根目录为树形目录结构中&#xff1b;下面来说说一下什么是挂载 挂载&#xff1a;指的就是将设备文件中的顶级目录连接到 Linux 根目录下的某一目录&#xff08;最好是…

5.音视频基础 FLV

目录 简说FLV FLV Header FLV Body Tag Header ​编辑Tag Data Audio Data Video Data Script Data 简说FLV FLV格式可以包含音频、视频和文本数据&#xff0c;并且可以在网络上进行流媒体传输。优点是文件大小较小&#xff0c;压缩效率高&#xff0c;并且可以在较低…

深度解析ISO9001质量管理体系认证的核心优势

ISO9001质量管理体系认证是一项全球通用的标准&#xff0c;旨在帮助企业优化质量管理&#xff0c;提升市场竞争力。本文将详细解析ISO9001认证为企业带来的多重核心优势。 首先&#xff0c;ISO9001认证显著提升了企业的产品和服务质量。通过建立和实施系统化的质量管理流程&…

为数据安全护航,袋鼠云在数据分类分级上的探索实践

在大数据时代&#xff0c;数据具有多源异构的特性&#xff0c;且价值各异&#xff0c;企业需依据数据的重要性、价值指数等予以区分&#xff0c;以利采取不同的数据保护举措&#xff0c;避免数据泄露。故而&#xff0c;数据分类分级管理属于数据安全保护中极为重要的环节之一。…

小白速成AI大模型就看这份资源包

前言 在数字化浪潮席卷全球的今天&#xff0c;人工智能&#xff08;AI&#xff09;技术已成为推动社会进步的重要引擎。尤其是AI大模型&#xff0c;以其强大的数据处理能力和广泛的应用前景&#xff0c;吸引了无数人的目光。然而&#xff0c;对于初学者“小白”来说&#xff0…

面向AI时代的软件开发新范式

作为一名软件开发者&#xff0c;有幸站在了AI时代的风口浪尖。在这篇博客中&#xff0c;我将分享我的个人看法&#xff0c;一起走向AI时代软件开发新范式。 首先&#xff0c;我们要明确软件开发活动产生的各种制品&#xff0c;都是人类知识的载体&#xff0c;也是人类文明的高级…

22种常用设计模式示例代码

文章目录 创建型模式结构型模式行为模式 仓库地址https://github.com/Xiamu-ssr/DesignPatternsPractice 参考教程 refactoringguru设计模式-目录 创建型模式 软件包复杂度流行度工厂方法factorymethod❄️⭐️⭐️⭐️抽象工厂abstractfactory❄️❄️⭐️⭐️⭐️生成器bui…

【Linux】Xshell和Xftp简介_安装_VMware虚拟机使用

1、简介 Xshell简介 Xshell是一款强大的安全终端模拟软件支持SSH1、SSH2以及Microsoft Windows平台的TELNET协议。该软件通过互联网实现到远程主机的安全连接&#xff0c;并通过其创新性的设计和特色帮助用户在复杂的网络环境中高效工作。Xshell可以在Windows界面下访问远端不…

阿里云域名解析

阿里云域名控制台&#xff1a;https://dc.console.aliyun.com/next/index#/domain-list/all

【两数之和】

两数之和 一、题目二、暴力解法三、哈希表四、map字典1.基本方法.set()添加键值对.get()通过键获取值.has()判断map是否有这个键 2.map和set的联系和区别共同点共同点MapSet 一、题目 二、暴力解法 三、哈希表 解题思路&#xff1a;将nums的元素依次以键值对的方式存储在map字典…

Hadoop升级失败,File system image contains an old layout version -64

原始版本 Hadoop 3.1.3 升级版本 Hadoop 3.3.3 报错内容如下 datasophon 部署Hadoop版本 查看Hadoop格式化版本 which hadoop-daemon.sh/bigdata/app/hadoop-3.1.3/sbin/hadoop-daemon.sh删除原来的旧版本 rm -rf /bigdata/app/hadoop-3.1.3查看环境变量 env|grep HADOOPHAD…