李宏毅2023机器学习作业HW06解析和代码分享

ML2023Spring - HW6 相关信息:
课程主页
课程视频
Sample code
HW06 视频
HW06 PDF

个人完整代码分享: GitHub | Gitee | GitCode

P.S. HW06 是在 Judgeboi 上提交的,出于学习目的这里会自定义两个度量的函数,不用深究,遵循 Suggestion 就可以达成学习的目的。

每年的数据集 size 和 feature 并不完全相同,但基本一致,过去的代码仍可用于新一年的 Homework。。

文章目录

  • 任务目标(seq2seq)
  • 性能指标(FID)
    • 安装环境
    • 定义函数计算 FID 和 AFD rate
  • 数据解析
    • 数据下载(kaggle)
  • Gradescope
    • Question 1
      • 简述去噪过程
    • Question 2
      • 训练/推理过程的差异
      • 生成图像的差异
      • 为什么 DDIM 更快
  • Baselines
    • Simple baseline (FID ≤ 30000, AFD ≥ 0)
    • Medium baseline (FID ≤ 12000, AFD ≥ 0.4)
    • Strong baseline (FID ≤ 10000, AFD ≥ 0.5)
    • Boss baseline(FID ≤ 9000, AFD ≥ 0.6)
  • 完整的样例图对比

任务目标(seq2seq)

  • Anime face generation: 动漫人脸生成
    • 输入:随机数
    • 输出:动漫人脸
    • 实现途径:扩散模型
    • 目标:生成 1000 张动漫人脸图像

性能指标(FID)

  • FID (Frechet Inception Distance)
    用于衡量真实图像与生成图像之间特征向量的距离,计算步骤:
    FID 计算

    1. 使用 Inception V3 模型分别提取真实图像生成图像的特征(使用最后一层卷积层的输出)
    2. 计算特征的均值和方差
    3. 计算 Frechet 距离
  • AFD (Anime face detection) rate

    用于衡量动漫人脸检测性能,用来检测提交的文件中有多少动漫人脸。

不过存在一个问题:代码中没有给出 FID 和 AFD 的计算,所以我们需要去自定义计算的函数用于学习。

安装环境

AFD rate 的计算使用预训练的 Haar Cascade 文件。anime_face_detector 库在 cuda 版本过新的时候,需要处理的步骤过多,不方便复现

安装 pytorch-fidultralytics,并下载预训练的 YOLOv8 模型(源自 Github)。

!pip install pytorch-fid ultralytics
!wget https://github.com/MagicalKyaru/yolov8_animeface/releases/download/v1/yolov8x6_animeface.pt

定义函数计算 FID 和 AFD rate

这里我们定义在 Inference 之后。

import os
import cv2
from pytorch_fid import fid_score

def calculate_fid(real_images_path, generated_images_path):
    """
    Calculate FID score between real and generated images.
    
    :param real_images_path: Path to the directory containing real images.
    :param generated_images_path: Path to the directory containing generated images.
    :return: FID score
    """
    fid = fid_score.calculate_fid_given_paths([real_images_path, generated_images_path], batch_size=50, device='cuda', dims=2048)
    return fid

def calculate_afd(generated_images_path, save=True):
    """
    Calculate AFD (Anime Face Detection) score for generated images.
    
    :param generated_images_path: Path to the directory containing generated images.
    :return: AFD score (percentage of images detected as anime faces)
    """
    results = yolov8_animeface.predict(generated_images_path, save=save, conf=0.8, iou=0.8, imgsz=64)

    anime_faces_detected = 0
    total_images = len(results)

    for result in results:
        if len(result.boxes) > 0:
            anime_faces_detected += 1

    afd_score = anime_faces_detected / total_images
    return afd_score

# Calculate and print FID and AFD with optional visualization
yolov8_animeface = YOLO('yolov8x6_animeface.pt')
real_images_path = './faces/faces'  # Replace with the path to real images
fid = calculate_fid(real_images_path, './submission')
afd = calculate_afd('./submission')
print(f'FID: {fid}')
print(f'AFD: {afd}')

注意,使用当前函数只是为了有个度量,单以当前的YOLOv8预训练模型为例,很可能当前模型只学会了判断两个眼睛的区域是 face,但没学会判断三个眼睛图像的不是 face,这会导致 AFD 实际上偏高,所以只能作学习用途。

数据解析

  • 训练数据:71,314 动漫人脸图片

    数据集下载链接:https://www.kaggle.com/datasets/b07202024/diffusion/download?datasetVersionNumber=1,也可以通过命令行进行下载:kaggle datasets download -d b07202024/diffusion

    注意下载完之后需要进行解压,并对应修改 Sample codeTraining Hyper-parameters 中的路径 path

数据下载(kaggle)

To use the Kaggle API, sign up for a Kaggle account at https://www.kaggle.com. Then go to the ‘Account’ tab of your user profile (https://www.kaggle.com/<username>/account) and select ‘Create API Token’. This will trigger the download of kaggle.json, a file containing your API credentials. Place this file in the location ~/.kaggle/kaggle.json (on Windows in the location C:\Users\<Windows-username>\.kaggle\kaggle.json - you can check the exact location, sans drive, with echo %HOMEPATH%). You can define a shell environment variable KAGGLE_CONFIG_DIR to change this location to $KAGGLE_CONFIG_DIR/kaggle.json (on Windows it will be %KAGGLE_CONFIG_DIR%\kaggle.json).

-- Official Kaggle API

替换<username>为你自己的用户名,https://www.kaggle.com/<username>/account,然后点击 Create New API Token,将下载下来的文件放去应该放的位置:

  • Mac 和 Linux 放在 ~/.kaggle
  • Windows 放在 C:\Users\<Windows-username>\.kaggle
pip install kaggle
# 你需要先在 Kaggle -> Account -> Create New API Token 中下载 kaggle.json
# mv kaggle.json ~/.kaggle/kaggle.json
kaggle datasets download -d b07202024/diffusion
unzip diffusion

Gradescope

这一题我们先处理可视化部分,这个有助于我们理解自己的模型(毕竟没有官方的标准来评价生成的图像好坏)。

Question 1

采样5张图像并展示其渐进生成过程,简要描述不同时间步的差异。

修改 GaussianDiffusion 类中的 p_sample_loop() 方法:

class GaussianDiffusion(nn.Module):
    
    ...
    
    # Gradescope – Question 1
    @torch.no_grad()
    def p_sample_loop(self, shape, return_all_timesteps = False, num_samples=5, save_path='./Q1_progressive_generation.png'):
        batch, device = shape[0], self.betas.device

        img = torch.randn(shape, device = device)
        imgs = [img]
        samples = [img[:num_samples]]  # Store initial noisy samples

        x_start = None
        
        ###########################################
        ## TODO: plot the sampling process ##
        ###########################################
        for t in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
            img, x_start = self.p_sample(img, t)
            imgs.append(img)
            if t % (self.num_timesteps // 20) == 0:
                samples.append(img[:num_samples])  # Store samples at specific steps
        
        ret = img if not return_all_timesteps else torch.stack(imgs, dim = 1)

        ret = self.unnormalize(ret)
        self.plot_progressive_generation(samples, len(samples)-1, save_path=save_path)
        return ret
    
    def plot_progressive_generation(self, samples, num_steps, save_path=None):
        fig, axes = plt.subplots(1, num_steps + 1, figsize=(20, 4))
        for i, sample in enumerate(samples):
            axes[i].imshow(vutils.make_grid(sample, nrow=1, normalize=True).permute(1, 2, 0).cpu().numpy())
            axes[i].axis('off')
            axes[i].set_title(f'Step {i}')
        if save_path:
            plt.savefig(save_path)
        plt.show()

表现如下(基于 Sample code):
在这里插入图片描述

简述去噪过程

去噪过程主要是指从完全噪声的图像开始,通过逐步减少噪声,最终生成一个清晰的图像。去噪过程的简单描述:

  1. 初始步骤(噪声):
    在初始步骤中,图像是纯噪声,此时的图像没有任何结构和可辨识的特征,看起来为随机的像素点。

  2. 中间步骤:
    模型通过多个时间步(Timesteps)将噪声逐渐减少,每一步都试图恢复更多的图像信息。

    • 早期阶段,图像中开始出现一些模糊的结构和形状。虽然仍然有很多噪声,但可以看到一些基本轮廓和大致的图像结构。

    • 中期阶段,图像中的细节开始变得更加清晰。面部特征如眼睛、鼻子和嘴巴开始显现,噪声显著减少,图像的主要轮廓和特征逐渐清晰。

  3. 最终步骤(完全去噪):
    在最后的步骤中,噪声被最大程度地去除,图像变清晰。

Question 2

DDPM(去噪扩散概率模型)在推理过程中速度较慢,而DDIM(去噪扩散隐式模型)在推理过程中至少比DDPM快10倍,并且保留了质量。请分别描述这两种模型的训练、推理过程和生成图像的差异,并简要解释为什么DDIM更快。

参考文献:

  • 去噪扩散概率模型 (DDPM)
  • 去噪扩散隐式模型 (DDIM)

下面是个简单的叙述,如果有需要的话,建议阅读原文进行理解。

训练/推理过程的差异

DDPM

  • DDPM 的训练分为前向扩散和反向去噪两个部分:
    前向扩散逐步给图像添加噪声。
    反向去噪使用 U-Net 模型,通过最小化预测噪声和实际噪声的差异来训练,逐步去掉这些噪声。

    • Ho et al., 2020, To represent the reverse process, we use a U-Net backbone similar to an unmasked PixelCNN++ with group normalization throughout.
  • 但需要处理大量的时间步(比如1000步),训练时间相对DDIM来说更长。

    • Ho et al., 2020, We set T = 1000 for all experiments …

DDIM

  • DDIM 的训练与 DDPM 类似,但使用非马尔可夫的确定性采样过程。
    • Song et al., 2020, We present denoising diffusion implicit models (DDIMs)…a non-Markovian deterministic sampling process

生成图像的差异

DDPM

  • 生成的图像质量很高,每一步去噪都会使图像变得更加清晰,但步骤多,整个过程比DDIM慢。

DDIM

  • 步骤少,生成速度快,且生成的图像质量与 DDPM 相当。
    • Song et al., 2020, Notably, DDIM is able to produce samples with quality comparable to 1000 step models within 20 to 100 steps …

为什么 DDIM 更快

  1. 步骤更少:DDIM 在推理过程中减少了很多步骤。例如,DDPM 可能需要 1000 步,而 DDIM 可能只需要 50-100 步。
    • Song et al., 2020, Notably, DDIM is able to produce samples with quality comparable to 1000 step models within 20 to 100 steps, which is a 10× to 50× speed up compared to the original DDPM. Even though DDPM could also achieve reasonable sample quality with 100× steps, DDIM requires much fewer steps to achieve this; on CelebA, the FID score of the 100 step DDPM is similar to that of the 20 step DDIM.
  2. 非马尔可夫采样
    • Song et al., 2020, These non-Markovian processes can correspond to generative processes that are deterministic, giving rise to implicit models that produce high quality samples much faster.
  3. 效率:确定性的采样方式使得 DDIM 能更快地生成高质量的图像。
    • Song et al., 2020, For DDIM, the generative process is deterministic, and x 0 x_0 x0 would depend only on the initial state x T x_T xT .

Baselines

实际上如果时间充足,出于学习的目的,可以对超参数或者模型架构进行调整以印证自身的想法。这篇文章是最近重新拾起的,所以只是一个简单的概述帮助理解。

另外,当前 FID 数的度量数量级和 Baseline 是不一致的,这里因为时间原因不做度量标准的还原,完成 Suggestion 和 Gradescope 就足够达成学习的目的了。

Simple baseline (FID ≤ 30000, AFD ≥ 0)

  • 运行所给的 sample code

Medium baseline (FID ≤ 12000, AFD ≥ 0.4)

  • 简单的数据增强
    T.RandomHorizontalFlip(), T.RandomRotation(10), T.ColorJitter(brightness=0.25, contrast=0.25)

  • 将 timesteps 变成1000(遵循 DDPM 原论文的设置)

    • 注意,设置为 1000 的话在 trainer.inference() 时很可能会遇到 CUDA out of memory,这里对 inference() 进行简单的修改。
      实际效果是针对 self.ema.ema_model.sample() 减少 batch_size 至 100,不用过多细究。

      def inference(self, num=1000, n_iter=10, output_path='./submission'):
              if not os.path.exists(output_path):
                  os.mkdir(output_path)
              with torch.no_grad():
                  for i in range(n_iter):
                      batches = num_to_groups(num // n_iter, 100)
                      all_images = list(map(lambda n: self.ema.ema_model.sample(batch_size=n), batches))[0]
                      
                      for j in range(all_images.size(0)):
                          torchvision.utils.save_image(all_images[j], f'{output_path}/{i * 100 + j + 1}.jpg')
      
  • 将 train_num_step 修改为 20000

Strong baseline (FID ≤ 10000, AFD ≥ 0.5)

  • Model Arch
    看了下HW06 对应的视频,从叙述上看应该指的是调整超参数:channeldim_mults
    这里简单的将 channel 调整为 32。
    dim_mults 初始为 (1, 2, 4),增加维度改成 (1, 2, 4, 8) 又或者改变其中的值都是允许的。
  • Varience Scheduler
    这部分可以自己实现,下面给出比较官方的代码供大家参考比对:使用 denoising-diffusion-pytorch 中的 cosine_beta_schedule(),对应的还有 sigmoid_beta_schedule()
    sigmoid_beta_schedule() 在训练时更适合用在分辨率大于 64x64 的图像上,当前训练集图像的分辨率为 96x96。
    增加和修改的部分代码:
def cosine_beta_schedule(timesteps, s = 0.008):
    """
    cosine schedule
    as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
    """
    steps = timesteps + 1
    t = torch.linspace(0, timesteps, steps, dtype = torch.float64) / timesteps
    alphas_cumprod = torch.cos((t + s) / (1 + s) * math.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return torch.clip(betas, 0, 0.999)

def sigmoid_beta_schedule(timesteps, start = -3, end = 3, tau = 1, clamp_min = 1e-5):
    """
    sigmoid schedule
    proposed in https://arxiv.org/abs/2212.11972 - Figure 8
    better for images > 64x64, when used during training
    """
    steps = timesteps + 1
    t = torch.linspace(0, timesteps, steps, dtype = torch.float64) / timesteps
    v_start = torch.tensor(start / tau).sigmoid()
    v_end = torch.tensor(end / tau).sigmoid()
    alphas_cumprod = (-((t * (end - start) + start) / tau).sigmoid() + v_end) / (v_end - v_start)
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return torch.clip(betas, 0, 0.999)

class GaussianDiffusion(nn.Module):
    def __init__(
		...
        beta_schedule = 'linear',
        ...
    ):
        ...
        if beta_schedule == 'linear':
            beta_schedule_fn = linear_beta_schedule
        elif beta_schedule == 'cosine':
            beta_schedule_fn = cosine_beta_schedule
        elif beta_schedule == 'sigmoid':
            beta_schedule_fn = sigmoid_beta_schedule
        else:
            raise ValueError(f'unknown beta schedule {beta_schedule}')
        ...
        
...
beta_schedule = 'cosine' # 'sigmoid'
...

Boss baseline(FID ≤ 9000, AFD ≥ 0.6)

  • StyleGAN
    仅供参考,从实验结果上来看,扩散模型生成的图像视觉上更清晰,而 StyleGAN 的风格更一致。
    当然,同样存在设置出现问题的情况(毕竟超参数直接延续了之前的设定。Anyway,希望对你有所帮助)
Strong (DDPM)Boss (StyleGAN)
strongboss
class StyleGANTrainer(object):
    def __init__(
        self, 
        folder, 
        image_size, 
        *,
        train_batch_size=16, 
        gradient_accumulate_every=1, 
        train_lr=1e-3, 
        train_num_steps=100000, 
        ema_update_every=10, 
        ema_decay=0.995, 
        save_and_sample_every=1000, 
        num_samples=25, 
        results_folder='./results', 
        split_batches=True
    ):
        super().__init__()

        dataloader_config = DataLoaderConfiguration(split_batches=split_batches)
        self.accelerator = Accelerator(
            dataloader_config=dataloader_config,
            mixed_precision='no')
        
        self.image_size = image_size

        # Initialize the generator and discriminator
        self.gen = self.create_generator().cuda()
        self.dis = self.create_discriminator().cuda()
        self.g_optim = torch.optim.Adam(self.gen.parameters(), lr=train_lr, betas=(0.0, 0.99))
        self.d_optim = torch.optim.Adam(self.dis.parameters(), lr=train_lr, betas=(0.0, 0.99))
        
        self.train_num_steps = train_num_steps
        self.batch_size = train_batch_size
        self.gradient_accumulate_every = gradient_accumulate_every

        # Initialize the dataset and dataloader
        self.ds = Dataset(folder, image_size)
        self.dl = cycle(DataLoader(self.ds, batch_size=train_batch_size, shuffle=True, pin_memory=True, num_workers=os.cpu_count()))

        # Initialize the EMA for the generator
        self.ema = EMA(self.gen, beta=ema_decay, update_every=ema_update_every).to(self.device)
        
        self.results_folder = Path(results_folder)
        self.results_folder.mkdir(exist_ok=True)
        
        self.save_and_sample_every = save_and_sample_every
        self.num_samples = num_samples
        self.step = 0

    def create_generator(self):
        return dnnlib.util.construct_class_by_name(
            class_name='training.networks.Generator',
            z_dim=512,
            c_dim=0,
            w_dim=512,
            img_resolution=self.image_size,
            img_channels=3
        )

    def create_discriminator(self):
        return dnnlib.util.construct_class_by_name(
            class_name='training.networks.Discriminator',
            c_dim=0,
            img_resolution=self.image_size,
            img_channels=3
        )

    @property
    def device(self):
        return self.accelerator.device

    def save(self, milestone):
        if not self.accelerator.is_local_main_process:
            return

        data = {
            'step': self.step,
            'gen': self.accelerator.get_state_dict(self.gen),
            'dis': self.accelerator.get_state_dict(self.dis),
            'g_optim': self.g_optim.state_dict(),
            'd_optim': self.d_optim.state_dict(),
            'ema': self.ema.state_dict()
        }

        torch.save(data, str(self.results_folder / f'model-{milestone}.pt'))

    def load(self, ckpt):
        data = torch.load(ckpt, map_location=self.device)
        self.gen.load_state_dict(data['gen'])
        self.dis.load_state_dict(data['dis'])
        self.g_optim.load_state_dict(data['g_optim'])
        self.d_optim.load_state_dict(data['d_optim'])
        self.ema.load_state_dict(data['ema'])
        self.step = data['step']

    def train(self):
        with tqdm(initial=self.step, total=self.train_num_steps, disable=not self.accelerator.is_main_process) as pbar:
            while self.step < self.train_num_steps:
                total_g_loss = 0.
                total_d_loss = 0.

                for _ in range(self.gradient_accumulate_every):
                    # Get a batch of real images
                    real_images = next(self.dl).to(self.device)
                    
                    # Generate latent vectors
                    latent = torch.randn([self.batch_size, self.gen.z_dim]).cuda()
                    
                    # Generate fake images
                    fake_images = self.gen(latent, None)

                    # Discriminator logits for real and fake images
                    real_logits = self.dis(real_images, None)
                    fake_logits = self.dis(fake_images.detach(), None)

                    # Discriminator loss
                    d_loss = torch.nn.functional.softplus(fake_logits).mean() + torch.nn.functional.softplus(-real_logits).mean()

                    # Update discriminator
                    self.d_optim.zero_grad()
                    self.accelerator.backward(d_loss / self.gradient_accumulate_every)
                    self.d_optim.step()
                    total_d_loss += d_loss.item()

                    # Generator logits for fake images
                    fake_logits = self.dis(fake_images, None)

                    # Generator loss
                    g_loss = torch.nn.functional.softplus(-fake_logits).mean()

                    # Update generator
                    self.g_optim.zero_grad()
                    self.accelerator.backward(g_loss / self.gradient_accumulate_every)
                    self.g_optim.step()
                    total_g_loss += g_loss.item()

                self.ema.update()

                pbar.set_description(f'G loss: {total_g_loss:.4f} D loss: {total_d_loss:.4f}')
                self.step += 1

                if self.step % self.save_and_sample_every == 0:
                    self.ema.ema_model.eval()
                    with torch.no_grad():
                        milestone = self.step // self.save_and_sample_every
                        batches = num_to_groups(self.num_samples, self.batch_size)
                        all_images_list = list(map(lambda n: self.ema.ema_model(torch.randn([n, self.gen.z_dim]).cuda(), None), batches))
                    all_images = torch.cat(all_images_list, dim=0)
                    utils.save_image(all_images, str(self.results_folder / f'sample-{milestone}.png'), nrow=int(np.sqrt(self.num_samples)))
                    self.save(milestone)
                pbar.update(1)

        print('Training complete')

    def inference(self, num=1000, n_iter=5, output_path='./submission'):
        if not os.path.exists(output_path):
            os.mkdir(output_path)
        with torch.no_grad():
            for i in range(n_iter):
                latent = torch.randn(num // n_iter, self.gen.z_dim).cuda()
                images = self.ema.ema_model(latent, None)
                for j, img in enumerate(images):
                    utils.save_image(img, f'{output_path}/{i * (num // n_iter) + j + 1}.jpg')
                    

完整的样例图对比

SimpleMediumStrongBoss
simplemediumstrongboss

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/724617.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

四十八、openlayers地图调色总结——锐化、模糊、浮雕滤镜,调整地图色相、饱和度、亮度

这篇是对滤镜的总结&#xff0c;方便工作中直接使用。 想要调整图层的颜色&#xff0c;有两种方法。 方法一&#xff1a; 加载图层时使用tileLoadFunction函数拿到context添加canvas滤镜效果。 this.imagery new TileLayer({source: new XYZ({url: "https://server.arc…

渲染农场深度解析:原理理解、配置要点与高效使用策略

许多设计领域的新手可能对“渲染农场”这一概念感到陌生。渲染农场是一种强大的计算资源集合&#xff0c;它通过高性能的CPU和GPU以及专业的渲染引擎&#xff0c;为设计项目提供必要的渲染支持。这种平台由多台计算机或渲染节点组成&#xff0c;形成一个分布式网络&#xff0c;…

第四篇:精通Docker构建:Dockerfile的艺术与策略

精通Docker构建&#xff1a;Dockerfile的艺术与策略 1. 开篇&#xff1a;探索Docker的革命 在探讨我们的主题之前&#xff0c;让我们先回顾一下Docker的概念。Docker是一个开源平台&#xff0c;用于自动化应用程序的部署、扩展和管理&#xff0c;这一切都是在轻量级的容器中进…

6月17日(周一)美国股市行情总结:标普纳指齐新高,AI和芯片股尤为出色

标普500指数在六天里第五天上涨&#xff0c;纳指和纳指100均连续六日新高&#xff0c;道指止步四日连跌脱离近两周低位&#xff0c;罗素小盘股指止步两日连跌并脱离六周最低。微软收盘市值仍为美股第一、苹果为第二、英伟达第三&#xff0c;但早盘触及盘中新高的英伟达市值曾超…

Linux虚拟机安装nginx并进行浏览器访问 - 附带常见问题和常用指令(实施必备)

1、Linux安装Nginx 1.1、下载Nginx安装包 Linux Nginx-1.25.5 官方其他版本 1.2、解压安装包 tar -zxvf nginx-1.25.5.tar.gz 1.3、安装依赖包 由于我使用的是1.25.5版本&#xff0c;所以需要加入依赖包 # yum install pcre pcre-devel # yum install zlib-devel 1.4、配置…

数据集制作——语义分割前png、jpg格式标签图转yolo格式.txt文件(附代码)

&#x1f4aa; 专业从事且热爱图像处理&#xff0c;图像处理专栏更新如下&#x1f447;&#xff1a; &#x1f4dd;《图像去噪》 &#x1f4dd;《超分辨率重建》 &#x1f4dd;《语义分割》 &#x1f4dd;《风格迁移》 &#x1f4dd;《目标检测》 &#x1f4dd;《暗光增强》 &a…

【论文阅读】MOA,《Mixture-of-Agents Enhances Large Language Model Capabilities》

前面大概了解了Together AI的新研究MoA&#xff0c;比较好奇具体的实现方法&#xff0c;所以再来看一下对应的文章论文。 论文&#xff1a;《Mixture-of-Agents Enhances Large Language Model Capabilities》 论文链接&#xff1a;https://arxiv.org/html/2406.04692v1 这篇文…

Qt入门小项目 | 实现一个图片查看器

文章目录 一、实现一个图片查看软件 一、实现一个图片查看软件 需要实现的功能&#xff1a; 打开目录选择图片显示图片的名字显示图片 在以上功能的基础上进行优化&#xff0c;需要解决如下问题&#xff1a; 如何记住上次打开的路径&#xff1f; 将路径保存到配置文件中&#x…

天地图(二)引入地图

1、在public下的index.html中引入天地图 <script src"http://api.tianditu.gov.cn/api?v4.0&tk你的密钥"></script> 2、在vue文件中写入 <template><div:id"mapDiv currentIndex"class"map"style"position: a…

VMware 虚拟机共享宿主机文件夹

一、背景 在虚拟机中&#xff0c;需要写文件到宿主机的文件系统中 宿主机的文件共享给虚拟机使用 这些场景就涉及到VM的虚拟机怎么访问宿主机的磁盘文件夹 二、软件背景 宿主机&#xff1a;window机器&#xff0c;本文是win7 虚拟软件&#xff1a;VMware12.5.6&#xff0…

STM32学习记录(八)————定时器输出PWM及舵机的控制

文章目录 前言一、PWM1.工作原理2.内部运作机制3. PWM工作模式4.PWM结构体及库函数 二、PWM控制舵机 前言 一个学习STM32的小白~ 有错误评论区或私信指出提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、PWM 1.工作原理 以向上计数为例&#xff0…

钡铼BL102应用智能电网配电柜PLC转MQTT无线接云服务

在当今智能电网的发展浪潮中&#xff0c;配电系统的智能化升级是提升电网效率与稳定性的重要环节。随着物联网技术的飞速发展&#xff0c;实现配电柜的远程监控与管理成为了可能&#xff0c;而这一转变的关键在于如何有效地将传统配电柜中的PLC数据接入到云端进行分析与处理。 …

ui自动化中,隐式等待和显示等待什么时候使用

隐式等待 在页面刷新加载时&#xff0c;页面元素还没有出来&#xff0c;这个时候如果去找元素就会找不到报错 或者点了一个菜单&#xff0c;页面加载时 用笨办法&#xff0c;就是用sleep等待固定的时间&#xff0c;这种浪费的时间比较多&#xff0c;就可以用隐式等待&#xf…

CleanShot X for Mac v4.7 屏幕截图录像工具(保姆级教程,小白轻松上手,简单易学)

Mac分享吧 文章目录 一、准备工作二、部分特有功能效果1、截图软件的普遍常用功能&#xff08;画框、箭头、加文字等&#xff09;都具备&#xff0c;不再详细介绍2、ABCD、1234等信息标注&#xff08;每按一下鼠标&#xff0c;即各是A、B、C、D...等&#xff09;3、截图更换背…

大语言模型架构---Transformer 模型

文章目录 输入编码多头自注意力机制前馈网络层编码器解码器当前主流的大语言模型都基于 Transformer 模型进行设计的。Transformer 是由多层的多头自注意力(Multi-head Self-attention)模块堆叠而成的神经网络模型。原始的 Transformer 模型由编码器和解码器两个部分构成,而…

KVB外汇:周四英国央行利率决议,英镑跌破1.26支撑的可能性有多大?

摘要&#xff1a; 本文分析了即将到来的英国央行利率决议对英镑汇率可能带来的影响。尽管市场普遍预计央行将维持利率不变&#xff0c;但随着通胀下降&#xff0c;意外降息的可能性仍然存在。文章探讨了汇市的反应预期、技术支撑位的重要性以及可能的货币政策走向&#xff0c;…

线程间通信

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 我们已经知道进程之间不能直接共享信息&#xff0c;那么线程之间可以共享信息吗&#xff1f;我们通过一个例子来验证一下。定义一个全局变量g_num&am…

C++设计模式——Proxy代理模式

一&#xff0c;代理模式简介 代理模式是一种 结构型设计模式&#xff0c;该模式通过引入一个新的代理对象Proxy&#xff0c;来间接访问原始对象&#xff0c;从而使访问方式变得灵活和可控。 代理对象的设定减少了客户端与真实对象之间的直接交互。 通过引入代理对象来间接访问原…

【diffusers 极速入门(二)】如何得到扩散去噪的中间结果?Pipeline callbacks 管道回调函数

本文是对 Hugging Face Diffusers 文档中关于回调函数的翻译与总结&#xff0c;&#xff1a; 管道回调函数 在管道的去噪循环中&#xff0c;可以使用callback_on_step_end参数添加自定义回调函数。该回调函数在每一步结束时执行&#xff0c;并修改管道属性和变量&#xff0c;以…