文章目录
- 前言
- 新版版本优势
- 实战演示
- 增加maven依赖
- 增加applicaiton.yaml配置
- 新增Kafka通道消费者
- 新增发送消息的接口
- 实战测试
- postman发送一个正常的消息
- postman发送异常消息
前言
之前我们已经整合过Spring Cloud Stream 3.0版本与Kafka、RabbitMQ中间件,简直不要太好,直接让我们不用再关心底层MQ如何集与消息收发。但是从Spring Cloud 2020版本开始,Spring Cloud Stream的版本升级至3.1.0以上版本,自此版本开始@StreamListener上面就增加@Deprecated注解,不赞成使用,有可能接下来的版本会删除掉。传说是有利于使用Project Reactor提供的事件流抽象(如Flux和Mono),命令函数在每个单独的事件上触发,而reactive函数只触发一次。故今天我们分享一期Spring Cloud Stream 3.1+整合Kafka,各位看官敬请鉴赏。
新版版本优势
新版提倡用函数式进行发送和消费信息
定义返回类型为Supplier, Function or Consumer的bean提供消息发送和消费的bean 看看绑定名称命名规则
input - + -in- +
output - + -out- +
在配置文件中指定spring.cloud.function.definition/spring.cloud.stream.function.definition的名称后会把这个bean绑定到对应的消费者和提供者上。
比如 inputChannel bean绑定了inputChannel-in-0通道,outputChannel bean绑定了outputChannel-out-0通道:
spring:
kafka:
bootstrap-servers: 192.168.112.10:9092,192.168.112.130:9092,192.168.112.129:9092
cloud:
stream:
kafka:
binder:
brokers: ${spring.kafka.bootstrap-servers}
binders:
kafkahub:
type: kafka
environment:
spring:
cloud:
stream:
kafka: ${spring.cloud.stream.kafka.binder}
default-binder: kafkahub
function:
definition: inputChannel,outputChannel
bindings:
inputChannel-in-0:
binder: kafkahub
destination: test-kafka-topic
group: test-kafka-group
content-type: text/plain
outputChannel-out-0:
binder: kafkahub
destination: test-kafka-topic
content-type: text/plain
producer:
partition-count: 3 #分区数目
此时消息生产者为:
@Resource
private StreamBridge streamBridge;
@GetMapping("/send")
public Boolean sendMessageToKafka(String msg){
boolean send = streamBridge.send("outputChannel-out-0", MessageBuilder.withPayload("kafka测试:"+msg).build());
return send;
}
此时消息消费者为:
@Configuration
public class KafkaChannel {
@Resource
private StreamBridge streamBridge;
/**
* inputChannel 消费者
* @author senfel
* @date 2024/6/18 15:26
* @return java.util.function.Consumer<java.lang.String>
*/
@Bean
public Consumer<Message<String>> inputChannel(){
return message -> {
System.out.println("接收到消息Payloa:" + message.getPayload());
System.out.println("接收到消息Header:" + message.getHeaders());
};
}
}
实战演示
我们简单进行一下演示即可,kafka环境可以看我之前的博文搭建。
主要演示功能:
正常情况下生产者发送消息到kafka,消费者监听消息并消费成功
异常情况下消费者消费失败,立即将异常消息投递到另一个topic上,兜底topic消费者消费
本次全部采用自动ack模式,如果需要手动ack参照之前的博文配置即可,注意在消费者端加上手动ack逻辑。
增加maven依赖
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.3.12.RELEASE</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.example</groupId>
<artifactId>cce-demo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>seata-demo-order</name>
<description>Demo project for Spring Boot</description>
<properties>
<java.version>8</java.version>
<spring-cloud.version>Hoxton.SR12</spring-cloud.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-stream-kafka</artifactId>
<version>3.2.4</version>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>${spring-cloud.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
增加applicaiton.yaml配置
spring:
#kafka
kafka:
bootstrap-servers: 192.168.112.10:9092,192.168.112.130:9092,192.168.112.129:9092
cloud:
stream:
kafka: # kafka配置
binder:
brokers: ${spring.kafka.bootstrap-servers}
auto-add-partitions: true #自动分区
auto-create-topics: true #自动创建主题
replication-factor: 3 #副本
min-partition-count: 3 #最小分区
bindings:
outputChannel-out-0:
producer:
# 无限制重发不产生消息丢失
retries: Integer.MAX_VALUE
#acks =0:producer不等待broker的ack,broker一接收到还没有写入磁盘就已经返回,可靠性最低
#acks =1:producer等待broker的ack,partition的leader刷盘成功后返回ack,如果在follower同步成功之前leader故障,那么将会丢失数据,可靠性中
#acks = all 、 -1:producer等待broker的ack,partition的leader和follower全部落盘成功后才返回ack,可靠性高,但延迟时间长
#可以设置的值为:all, -1, 0, 1
acks: all
min:
insync:
replicas: 3 #感知副本数
inputChannel-in-0:
consumer:
concurrency: 1 #消费者数量
max-concurrency: 5 #最大消费者数量
recovery-interval: 3000 #3s 重连
auto-rebalance-enabled: true #主题分区消费者组成员自动平衡
auto-commit-offset: false #手动提交偏移量
enable-dlq: true # 开启 dlq队列
dlq-name: test-kafka-topic.dlq
deserializationExceptionHandler: sendToDlq #异常加入死信
binders: # 与外部mq组件绑定
kafkahub:
type: kafka
environment:
spring:
cloud:
stream:
kafka: ${spring.cloud.stream.kafka.binder}
default-binder: kafkahub #默认绑定
function: # 定义channel名字,每个channel又可以作为生产者(in)与消费者(out)
definition: inputChannel;outputChannel;dlqChannel
bindings: # 通道绑定
inputChannel-in-0:
binder: kafkahub
destination: test-kafka-topic
group: test-kafka-group
content-type: text/plain
consumer:
maxAttempts: 1 # 尝试消费该消息的最大次数(消息消费失败后,发布者会重新投递)。默认3
backOffInitialInterval: 1000 # 重试消费消息的初始化间隔时间。默认1s,即第一次重试消费会在1s后进行
backOffMultiplier: 2 # 相邻两次重试之间的间隔时间的倍数。默认2
backOffMaxInterval: 10000 # 下一次尝试重试的最大时间间隔,默认为10000ms,即10s
outputChannel-out-0:
binder: kafkahub
destination: test-kafka-topic
content-type: text/plain
producer:
partition-count: 3 #分区数目
dlqChannel-in-0:
binder: kafkahub
destination: test-kafka-topic.dlq
group: test-kafka-group
content-type: text/plain
consumer:
maxAttempts: 1 # 尝试消费该消息的最大次数(消息消费失败后,发布者会重新投递)。默认3
backOffInitialInterval: 1000 # 重试消费消息的初始化间隔时间。默认1s,即第一次重试消费会在1s后进行
backOffMultiplier: 2 # 相邻两次重试之间的间隔时间的倍数。默认2
backOffMaxInterval: 10000 # 下一次尝试重试的最大时间间隔,默认为10000ms,即10s
dlqChannel-out-0:
binder: kafkahub
destination: test-kafka-topic.dlq
content-type: text/plain
producer:
partition-count: 3 #分区数目
新增Kafka通道消费者
import org.springframework.cloud.stream.function.StreamBridge;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.messaging.Message;
import org.springframework.messaging.support.MessageBuilder;
import javax.annotation.Resource;
import java.util.function.Consumer;
/**
* KafkaCustomer
* @author senfel
* @version 1.0
* @date 2024/6/18 15:22
*/
@Configuration
public class KafkaChannel {
@Resource
private StreamBridge streamBridge;
/**
* inputChannel 消费者
* @author senfel
* @date 2024/6/18 15:26
* @return java.util.function.Consumer<java.lang.String>
*/
@Bean
public Consumer<Message<String>> inputChannel(){
return message -> {
System.out.println("接收到消息:" + message.getPayload());
System.out.println("接收到消息:" + message.getHeaders());
if(message.getPayload().contains("9")){
boolean send = streamBridge.send("dlqChannel-out-0", MessageBuilder.withPayload("kafka异常消息发送到dlq测试:"+message).build());
System.err.println("向dlqChannel发送消息:"+send);
}
};
}
/**
* dlqChannel 死信消费者
* @author senfel
* @date 2024/6/18 15:26
* @return java.util.function.Consumer<java.lang.String>
*/
@Bean
public Consumer<Message<String>> dlqChannel(){
return message -> {
System.out.println("死信dlqChannel接收到消息:" + message.getPayload());
System.out.println("死信dlqChannel接收到消息:" + message.getHeaders());
};
}
}
新增发送消息的接口
@Resource
private StreamBridge streamBridge;
@GetMapping("/send")
public Boolean sendMessageToKafka(String msg){
boolean send = streamBridge.send("outputChannel-out-0", MessageBuilder.withPayload("kafka测试:"+msg).build());
return send;
}