简单线性回归:预测事物间简单关系的利器

文章目录

  • 🍀简介
  • 🍀什么是简单线性回归?
  • 🍀简单线性回归的应用场景
    • 使用步骤:
      • 注意事项:
  • 🍀代码演示
  • 🍀结论

🍀简介

在数据科学领域,线性回归是一种基本而强大的统计分析方法。它广泛应用于各个领域,从经济学到生物医学研究,从市场营销到城市规划,目的是建立和利用变量之间的简单关系,以便预测未来趋势或做出决策。在本文中,我们将深入探讨简单线性回归的工作原理、应用场景和使用步骤,以帮助您更好地理解和应用这一强大的分析工具。


🍀什么是简单线性回归?

简单线性回归是一种线性回归模型的基本形式,用于分析两个变量之间的关系。其中一个变量被称为“自变量”或“预测变量”,而另一个变量被称为“因变量”或“响应变量”。简单线性回归假设自变量和因变量之间存在线性关系,即以自变量的值来预测因变量的值。


🍀简单线性回归的应用场景

  • 预测销售量:根据广告投入金额预测产品销售量。
  • 理解变量之间的关系:比如研究学习时间和考试分数之间是否存在正相关关系。
  • 预测趋势:根据过去几年的数据,预测未来的市场趋势。

使用步骤:

  • 收集数据:收集包含自变量和因变量的样本数据。
  • 数据预处理:对数据进行清洗,去除异常值或缺失数据。
  • 绘制散点图:可视化数据以了解自变量和因变量之间的总体关系。
  • 拟合回归线:使用最小二乘法拟合一条直线,使其最好地拟合数据分布。
  • 解释结果:根据回归线的斜率和截距解释变量之间的关系。
  • 进行预测:利用已知自变量的值,通过回归方程预测因变量的值。

注意事项:

  • 线性回归模型可能不适用于非线性关系的数据。
  • 数据的质量对于回归分析的准确性至关重要,要确保数据的准确性一致性
  • 线性回归模型的结果需要进行合理的解释和验证。

🍀代码演示

上代码前我们可以先了解一下最小二乘法

最小二乘法是一种常用的数学方法,用于拟合数据点与数学模型之间的关系。它的目标是通过调整模型的参数,使模型预测值与实际观测值之间的误差的平方和最小化。这种方法广泛应用于统计学、机器学习、工程学和自然科学等领域,用于分析和拟合数据,寻找数据背后的模式和趋势。

最小二乘法的基本思想是,通过最小化观测值与模型预测值之间的残差平方和来找到最优的模型参数。残差是指每个观测值与对应模型预测值之间的差异。通过求解最小化残差平方和的问题,可以得到最优的模型参数。

请添加图片描述

公式的推导可以看这位大佬的文章https://blog.csdn.net/weixin_40255714/article/details/125841394

import numpy as np
import matplotlib.pyplot as plt
x = np.array([1,2,3,4,5])
y = np.array([1,3,2,3,5])
plt.scatter(x,y)
plt.axis([0,6,0,6])
plt.show()
#  y = a*x+b  需要计算出a和b
x_mean = np.mean(x)
y_mean = np.mean(y)
num = 0.0 # 分子
d = 0.0  #  分母
for x_i,y_i in zip(x,y):
    num += (x_i-x_mean)*(y_i-y_mean)
    d += (x_i-x_mean)**2
a = num/d
b = y_mean-a*x_mean

a和b求出来之后,我们就可以进行绘制一下,记住这里指的是找到一条直线,使得每一个点的预测值和真实值之差达到最小
在这里插入图片描述

预测就很简单了,带入求值即可
在这里插入图片描述

🍀结论

简单线性回归是一种简单而有效的分析方法,可用于预测和理解变量之间的关系。通过收集和处理数据,我们可以建立一个可靠的回归模型,从而进行预测和决策。但要注意变量之间的线性关系是否真实存在,并且合理解释结果。希望本文对您理解简单线性回归有所帮助,并且能够在您的实际问题中应用这一强大的分析工具。

请添加图片描述

挑战与创造都是很痛苦的,但是很充实。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/72223.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Grounding dino + segment anything + stable diffusion 实现图片编辑

目录 总体介绍总体流程 模块介绍目标检测: grounding dino目标分割:Segment Anything Model (SAM)整体思路模型结构:数据引擎 图片绘制 集成样例 其他问题附录 总体介绍 总体流程 本方案用到了三个步骤,按顺序依次为&#xff1a…

前端处理后端返回的数据中有\n\n字样的换行符标识

后端返回的数据: 上面圈着的部分就是\n,前端需要将数据进行换行,对于这类型的数据,在前端页面是需要进行稍微处理才能正常显示。如果没有经过处理,那么内容是不会在有换行符的位置进行换行显示的 解决办法1&#xff1…

微服务07-分布式缓存

前提: 单机的Redis存在四大问题: 解决办法:基于Redis集群解决单机Redis存在的问题 1、Redis持久化 Redis 具有持久化功能,其会按照设置以 快照 或 操作日志 的形式将数据持久化到磁盘。 Redis有两种持久化方案: RDB持久化AOF持久化注意: RDB 是默认持久化方式,但 Red…

【MySQL】并发执行事务可能存在的问题, 事务的四种隔离级别

文章目录 前言一、并发执行事务可能存在的问题1, 脏读问题2, 不可重复读3, 幻读 二、MySQL 的四种隔离级别1, READ UNCOMMITTED 读未提交2, READ COMMITTED 读已提交3, REPEATABLE READ 可重复读 (MySQL 的默认事务隔离级别)4, SERIALIZABLE 串行化 总结 前言 各位读者好, 我是…

Easy Rules规则引擎(1-基础篇)

目录 一、序言二、Easy Rules介绍三、定义规则(Rules)1、规则介绍2、编程式规则定义3、声明式规则定义 四、定义事实(Facts)五、定义规则引擎(Rules Engine)1、规则引擎介绍2、InferenceRulesEngine规则引擎示例(1) 定义触发条件(2) 定义规则触发后的执行行为(3) 测试用例 一、…

【密码学】密码棒密码

密码棒密码 大约在公元前700年,古希腊军队使用一种叫做scytale的圆木棍来进行保密通信。其使用方法是这样的:把长带子状羊皮纸缠绕在圆木棍上,然后在上面写字;解下羊皮纸后,上面只有杂乱无章的字符,只有再次以同样的方式缠绕到同样粗细的棍子上,才能看出所写的内容。快速且不容…

安卓源码分析(10)Lifecycle实现组件生命周期管理

参考: https://developer.android.google.cn/topic/libraries/architecture/lifecycle?hlzh-cn#java https://developer.android.google.cn/reference/androidx/lifecycle/Lifecycle 文章目录 1、概述2、LifeCycle类3、LifecycleOwner类4、LifecycleObserver类 1、…

聊聊51单片机

目录 1.介绍 2.发展 3.应用领域 4.发展前景 1.介绍 51单片机(AT89C51)是一种常见的8位微控制器,属于Intel MCS-51系列。它是一种低功耗、高性能的单片机,广泛应用于嵌入式系统中。 51单片机具有很多特点和功能,例如…

智慧城市美术效果Unity实现笔记流程

智慧城市美术效果Unity实现笔记流程: 参考 对标 效果图: 参考资料: 方案一: fBlender GIS 获取城市 房屋道路等数据 安装BlenderGIS插件 落叶大师智慧城市效果解析 方案二: CityEngine2022地块生成 写实类-参考图&…

棒球在国际上的流行·棒球1号位

棒球在国际上的流行 1. 棒球的起源与历史 棒球的起源源于美国。19世纪中叶,由于美国领土的扩张,当时的美国殖民地的印第安人将棒球类游戏,带到了当时的弗吉尼亚州的奥克兰。后来,棒球运动流传到了加利福尼亚州的圣迭戈。早期的棒…

初识鸿蒙跨平台开发框架ArkUI-X

HarmonyOS是一款面向万物互联时代的、全新的分布式操作系统。在传统的单设备系统能力基础上,HarmonyOS提出了基于同一套系统能力、适配多种终端形态的分布式理念,能够支持手机、平板、智能穿戴、智慧屏、车机等多种终端设备,提供全场景&#…

adb用法,安卓的用户CA证书放到系统CA证书下

设备需root!!设备需root!!设备需root!! ​​​​​​​测试环境:redmi 5 plus、miui10 9.9.2dev(安卓8.1)、已root win下安装手机USB驱动(过程略&#xff0c…

OPENCV C++(十二)模板匹配

正常模板匹配函数 matchTemplate(img, templatee, resultMat, 0);//模板匹配 这里0代表的是方法,一般默认为0就ok img是输入图像 templatee是模板 resultmat是输出 1、cv::TM_SQDIFF:该方法使用平方差进行匹配,因此最佳的匹配结果在结果为…

R语言5_安装Giotto

环境Ubuntu22/20, R4.1. 已开启科学上网。 第一步,更新服务器环境,进入终端,键入如下命令, apt-get update apt install libcurl4-openssl-dev libssl-dev libxml2-dev libcairo2-dev libgtk-3-dev libhdf5-dev libmagick9-dev …

[HDLBits] Exams/2012 q1g

Consider the function f shown in the Karnaugh map below. Implement this function. (The original exam question asked for simplified SOP and POS forms of the function.) //

第三章 图论 No.9有向图的强连通与半连通分量

文章目录 定义Tarjan求SCC1174. 受欢迎的牛367. 学校网络1175. 最大半连通子图368. 银河 定义 连通分量是无向图的概念,yxc说错了,不要被误导 强连通分量:在一个有向图中,对于分量中的任意两点u,v,一定能从…

Easys Excel的表格导入(读)导出(写)-----java

一,EasyExcel官网: 可以学习一些新知识: EasyExcel官方文档 - 基于Java的Excel处理工具 | Easy Excel 二,为什么要使用easyexcle excel的一些优点和缺点 java解析excel的框架有很多 : poi jxl,存在问题:非常的消耗内存, easyexcel 我们…

arcgis栅格数据之最佳路径分析

1、打开arcmap,加载数据,需要对影像进行监督分类,如下: 这里任选一种监督分类的方法(最大似然法),如下: 这里会先生成一个.ecd文件,然后再利用.ecd文件对影像进行分类。如…

新知识:Monkey 改进版之 App Crawler

原生Monkey 大家知道Monkey是Android平台上进行压力稳定性测试的工具,通过Monkey可以模拟用户触摸屏幕、滑动、按键等伪随机用户事件来对设备上的程序进行压力测试。而原生的Android Monkey存在一些缺陷: 事件太过于随机,测试有效性大打折扣…