第55期|GPTSecurity周报

图片

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。

Security Papers

1. REVS: 通过词汇空间中的排名编辑在语言模型中消除敏感信息

简介:大语言模型(LLMs)可能无意中记住并泄露训练数据中的敏感信息,引发隐私担忧。为解决此问题,研究者提出了一种名为REVS的创新模型编辑技术。该技术通过识别和修改与敏感信息相关的神经元子集来消除这些信息。REVS将这些神经元映射到词汇空间,以确定生成敏感内容的关键组件,并通过计算反嵌入矩阵的伪逆来编辑模型,从而减少敏感数据的生成。研究者通过电子邮件数据集和合成的社会保障号码数据集这两个数据集,验证了REVS的有效性。结果表明,REVS在消除敏感信息和抵御提取攻击方面表现出色,同时保持了模型的完整性。

链接:

https://arxiv.org/pdf/2406.09325

2. 人工智能作为新黑客:开发用于进攻性安全的智能体

简介:在网络安全领域,人工智能(AI)技术正被用于开发自主攻击代理ReaperAI,以模拟和执行网络攻击。通过利用大语言模型如GPT-4的能力,ReaperAI能够自主识别和利用安全漏洞。在多个平台上的测试表明,ReaperAI成功利用已知漏洞,展示了其在进攻性安全策略中的潜力。然而,AI在进攻性安全中的应用也引发了伦理和操作上的挑战,包括命令执行、错误处理和伦理约束。本研究强调了AI在网络安全中创新应用的重要性,并提出了未来研究方向,包括AI与安全工具的交互优化、学习机制的提升以及伦理指导方针的讨论。

链接:

https://arxiv.org/abs/2406.07561

3. 利用大语言模型(LLM)辅助的代码补全模型易触发后门攻击:注入伪装的漏洞以对抗强检测

简介:大语言模型(LLMs)在软件工程中通过提供上下文建议显著提高了代码补全的效率。然而,这些模型在特定应用中的微调可能遭受中毒和后门攻击,导致输出被秘密篡改。为应对这一安全威胁,研究者提出了CodeBreaker,这是一个利用LLMs(如GPT-4)进行复杂载荷转换的后门攻击框架,确保中毒数据和生成代码能够绕过强漏洞检测。CodeBreaker通过直接将恶意载荷集成到源代码中,挑战了现有的安全措施,凸显了对代码补全系统加强防御的必要性。实验和用户研究证实了CodeBreaker在不同环境下的攻击效能,证明了其在现有方法中的优越性。

链接:

https://arxiv.org/abs/2406.06822

4. SecureNet: DeBERTa与大语言模型在钓鱼检测中的比较研究

简介:在网络安全领域,钓鱼攻击通过社会工程学手段诱骗用户泄露敏感信息,对组织构成重大威胁。本文探讨了大语言模型(LLMs)在检测钓鱼内容方面的潜力,并与DeBERTa V3模型进行了比较。通过使用包括电子邮件、HTML、URL、短信和合成数据在内的公共数据集,研究者系统地评估了这些模型的性能和局限性。

研究发现,基于Transformer的DeBERTa模型在检测钓鱼内容方面表现最佳,其召回率高达95.17%,而GPT-4的召回率为91.04%。此外,研究者还探讨了这些模型在生成钓鱼邮件方面的挑战,并评估了它们在这一背景下的性能。研究结果为未来加强网络安全措施提供了宝贵的见解,有助于更有效地检测和应对钓鱼威胁。

链接:

https://arxiv.org/abs/2406.06663

5. 探索大语言模型(GPT-4)在二进制逆向工程中的有效性

简介:本研究探讨了大语言模型(LLMs),特别是GPT-4,在二进制逆向工程(RE)领域的应用能力。通过结构化的实验方法,研究者分析了LLMs在解释人类编写的和反编译的代码方面的性能。研究包括两个阶段:第一个阶段关注基本代码解释,第二个阶段则涉及更复杂的恶意软件分析。关键发现表明,LLMs在一般代码理解方面表现出色,但在详细的技术和安全分析方面效果各异。

研究强调了LLMs在逆向工程中的潜力和当前的局限性,为未来应用和改进提供了关键的见解。此外,研究者还检查了实验方法,如评估方法和数据限制,为研究者未来在此领域的研究活动提供了技术视野。

链接:

https://arxiv.org/abs/2406.06637

6. OccamLLM:单步快速精确语言模型算术

简介:为了提高大语言模型(LLMs)在执行复杂算术运算时的准确性,研究者提出了一种新框架,该框架允许在单个自回归步骤中进行精确的算术运算。通过利用LLM的隐藏状态来控制符号架构,研究者的方法在单个算术运算上达到了100%的准确率,与GPT-4相当,甚至在多步骤推理问题上也超过了Llama 3 8B Instruct和GPT-3.5 Turbo。该方法不仅提高了速度和安全性,还保持了LLM的原有能力。研究者计划不久后公开代码,以促进更广泛的研究和应用。

链接:

https://arxiv.org/abs/2406.06576

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/721657.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CIC-DDoS2019-Detection

CIC-DDoS2019 对CIC-DDoS2019数据集进行检测,本文提供了如下内容: 数据清洗与合并机器学习模型深度学习模型PCA,t-SNE分析数据,结果可视化 代码地址:[daetz-coder](https://github.com/daetz-coder/CIC-DDoS2019-Detection) 1、数据集加载…

【Anaconda】【Windows编程技术】【Python】Anaconda的常用命令及实操

一、Anaconda终端 在安装Anaconda后,电脑上会新增一个Anaconda终端,叫Anaconda Prompt,如下图: 我们选择“打开文件位置”,将快捷方式复制一份到桌面上,这样日后就可以从桌面上方便地访问Anaconda终端了&…

欢乐钓鱼大师游戏攻略:萌新必备攻略大全!钓鱼脚本!

《欢乐钓鱼大师》是一款休闲益智类游戏,以钓鱼为主题,玩家需要通过各种钓鱼任务和挑战,收集不同种类的鱼类,并提升自己的钓鱼技术和装备。本文将为大家详细解析游戏的各个方面,帮助玩家更好地掌握游戏技巧,…

Airbind - hackmyvm

简介 靶机名称:Airbind 难度:中等 靶场地址:https://hackmyvm.eu/machines/machine.php?vmAirbind 本地环境 虚拟机:vitual box 靶场IP(Airbind):192.168.56.121 跳板机IP(windows 11)&…

BEV 中 multi-frame fusion 多侦融合(一)

文章目录 参数设置align_dynamic_thing:为了将动态物体的点云数据从上一帧对齐到当前帧流程旋转函数平移公式filter_points_in_ego:筛选出属于特定实例的点get_intermediate_frame_info: 函数用于获取中间帧的信息,包括点云数据、传感器校准信息、自车姿态、边界框及其对应…

半监督医学图像分割:基于对抗一致性学习和动态卷积网络的方法| 文献速递-深度学习结合医疗影像疾病诊断与病灶分割

Title 题目 Semi-Supervised Medical Image Segmentation Using Adversarial Consistency Learning and Dynamic Convolution Network 半监督医学图像分割:基于对抗一致性学习和动态卷积网络的方法 01 文献速递介绍 医学图像分割在计算辅助诊断和治疗研究中扮演…

移动app必须进行安全测试吗?包括哪些测试内容?

移动App已经成为我们日常生活中不可或缺的一部分,无论是社交娱乐还是工作学习,我们都离不开这些精心设计的应用程序。然而,随着移动App的广泛普及和使用,其安全性问题也逐渐浮出水面。为了确保用户数据的安全和减少潜在的风险&…

Playwright工作原理

执行test时,有哪些关键步骤 当我们用Playwright编写一段简单的test script,代码如下所示:在test case中第一段代码就是await page.goto(xxxxx) import { test, expect } from playwright/test;test(test, async ({ page }) > {await page…

新闻稿发布中被拒稿的原因分析

企业的公关经理在落地新闻宣传时一定碰到过新闻媒体拒稿的情况,小马识途在此总结了常见的拒稿原因,供广大企业参考。 1、新闻稿内容涉及违法违规信息 企业在发稿的时候内容一定要确认好,不要涉及违法、违规类信息,如果新闻内容里…

序列到序列模型中的注意力机制

目录 一、说明 二、编码器解码器架构中的问题:需要注意 2.1 编码器方面的问题: 2.2 解码器方面的问题: 三、什么是注意力机制? 3.1 计算 ci 值: 3.2 ci 的广义表示: 四、Bahdanau 注意 : 4.1. 兼…

报表开发工具DevExpress Reporting v23.2 - 增强PDF导出、多平台打印等

DevExpress Reporting是.NET Framework下功能完善的报表平台,它附带了易于使用的Visual Studio报表设计器和丰富的报表控件集,包括数据透视表、图表,因此您可以构建无与伦比、信息清晰的报表。 DevExpress Reporting控件日前正式发布了v23.2…

生产看板管理系统内容有哪些?

相信很多做生产管理的朋友都会遇到如下问题,我就在想,是否能一个创建“透明的”的工作场所?让员工和管理者能够实时查询生产进度,及时发现生产中的问题。 生产进度难追踪 生产过程不透明 生产决策缺乏数据支持 ——能&#xf…

LeRobot——Hugging Face打造的机器人领域的Transformer架构

前言 如友人邓博士所说,“用 Stanford aloha 课题组提供的训练数据,训练他们研发的 Action Chunking Transformer 动作规划模型,训练结果,能用,但是稳定性有待提高 要提高稳定性,看来必须修改 Stanford a…

C++初学者指南第一步---6.枚举和枚举类

C初学者指南第一步—6.枚举和枚举类 文章目录 C初学者指南第一步---6.枚举和枚举类1.作用域的枚举(enum class类型)(C11)2.无作用域的枚举(enum类型)3.枚举类的基础类型4.自定义枚举类映射5.和基础类型的互相转换 1.作用域的枚举(enum class类…

深度学习(九)——神经网络:最大池化的作用

一、 torch.nn中Pool layers的介绍 官网链接: https://pytorch.org/docs/stable/nn.html#pooling-layers 1. nn.MaxPool2d介绍 nn.MaxPool2d是在进行图像处理时,Pool layers最常用的函数 官方文档:MaxPool2d — PyTorch 2.0 documentation &…

耗时两天半的java之sql注入代码审计

java之sql注入代码审计 前言 其实找到漏洞原因很简单,主要想学习一下JDBCsql的过程 JDBC 简单介绍 Java通过java.sql.DriverManager来管理所有数据库的驱动注册,所以如果想要建立数据库连接需要先在java.sql.DriverManager中注册对应的驱动类&#x…

2Y0A21 GP2Y0A21YK0F 红外测距传感器 arduino使用教程

三根线 正极负极信号线 确认自己的三根线分别代表什么,我们的颜色可能不一样 附一张我买的传感器他们的说明图 正极 接 开发板5V 负极 接开发板GND 信号线 接A0 代码arduino ide上面写 // Infračerven senzor vzdlenosti Sharp 2Y0A21// připojen potře…

新火种AI|Sora发布半年之后,AI视频生成领域风云再起

作者:一号 编辑:美美 AI视频最近有些疯狂,Sora可能要着急了。 自OpenAI的Sora发布以来,AI视频生成技术便成为了科技界的热门话题。尽管Sora以其卓越的性能赢得了广泛关注,但其迟迟未能面向公众开放,让人…

Study--Oracle-03-数据库常规操作

一路走来,所有遇到的人,帮助过我的、伤害过我的都是朋友,没有一个是敌人。 一、oracle 版本及主要功能 二、数据安装完成后常用操作SQL 1、检查数据库监听状态 监听的常用命令 启动:[oracleoracle u01]$ lsnrctl stop 停止&am…

买家用洗地机需要注意什么?全面评测热门洗地机品牌

对于忙碌的打工族来说,“做家务”是一件非常消费时间精力的事情,但它又是生活中的一部分,为了解决这些矛盾点,越来越多的清洁家电涌向市场,像集扫地、吸尘、洗地为一体的洗地机,在推拉之间便把脏污处理干净…