【LangChain学习】基于PDF文档构建问答知识库(三)实战整合 LangChain、OpenAI、FAISS等

接下来,我们开始在web框架上整合 LangChain、OpenAI、FAISS等。

一、PDF库

因为项目是基于PDF文档的,所以需要一些操作PDF的库,我们这边使用的是PyPDF2

from PyPDF2 import PdfReader


# 获取pdf文件内容
def get_pdf_text(pdf):
    text = ""
    pdf_reader = PdfReader(pdf)
    for page in pdf_reader.pages:
        text += page.extract_text()

    return text

传入 pdf 文件路径,返回 pdf 文档的文本内容。

二、LangChain库

1、文本拆分器

首先我们需要将第一步拿到的本文内容拆分,我们使用的是 RecursiveCharacterTextSplitter ,默认使用 ["\n\n","\n"," "] 来分割文本。

from langchain.text_splitter import RecursiveCharacterTextSplitter


# 拆分文本
def get_text_chunks(text):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        # chunk_size=768,
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks

其中这里 chunk_size 参数要注意,这里是指文本块的最大尺寸,如果用chatgpt3.5会在问答的时候容易出现token长度超过4096的异常,这个后面会说如何调整,只需要换一下模型就好了。

这个参数对于向量化来说,比较重要,因为到时候喂给OpenAI去分析的时候,携带的上下文内容就会比较多,这样准确性和语义分析上也有不少的帮助。

2、向量库

项目使用 FAISS,就是将 pdf 读取到的文本向量化以后,通过 FAISS 保存到本地,后续就不需要再执行向量化,就可以读取之前的备份。

from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings


# 保存
def save_vector_store(textChunks):
    db = FAISS.from_texts(textChunks, OpenAIEmbeddings())
    db.save_local('faiss')


# 加载
def load_vector_store():
    return FAISS.load_local('faiss', OpenAIEmbeddings())

其中 faiss 参数为保存的目录名称,默认在项目同级目录下生成。

这里使用 OpenAI 的方法 OpenAIEmbeddings 来进行向量化。

3、检索型问答链

from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate


# 获取检索型问答链
def get_qa_chain(vector_store):
    prompt_template = """基于以下已知内容,简洁和专业的来回答用户的问题。
                                            如果无法从中得到答案,清说"根据已知内容无法回答该问题"
                                            答案请使用中文。
                                            已知内容:
                                            {context}
                                            问题:
                                            {question}"""

    prompt = PromptTemplate(template=prompt_template,
                            input_variables=["context", "question"])

    return RetrievalQA.from_llm(llm=ChatOpenAI(model_name='gpt-3.5-turbo-16k'), retriever=vector_store.as_retriever(), prompt=prompt)

1)RetrievalQA 检索行问答链

这里使用 RetrievalQA,这种链的缺点是一问一答,是没有history的,是单轮问答。

2)自定义提示 PromptTemplate

这里还是使用到自定义提示 PromptTemplate,主要作用是使 OpenAI 能根据我们传入的向量文本为蓝本,限制它的回答范围,并要求使用中文回答。这样的好处在于,如果我们问一些非 pdf 涉及的内容,OpenAI 会返回无法作答,而不是根据自己的大模型数据来回答问题。

3)llm 模型

我们还是用 Chat 模型作为 llm 的输入模型,这里可以看到,我们使用的 model 为 gpt-3.5-turbo-16k,它可以支持 16384 个tokens,而 gpt-3.5-turbo 只支持 4096 个tokens

所以这里就回答了上面文本拆分器 chunk_size 参数,如果使用 gpt-3.5-turbo 模型,笔者尝试过,最大可能就是只能到 768,不过这个具体要看向量化以后,携带的文本的大小tokens而定。

不过使用 gpt-3.5-turbo-16k 也是有代价的,就是它比  gpt-3.5-turbo 要贵,大概是2倍的价格。

三、路由整合

我们将上面实现的三个工具方法整合到路由,主要实现 pdf 文件的本地向量初始化,还有基于向量化的 pdf 文档内容进行问答。

from fastapi import APIRouter, Body
from ..util import pdf, langchain, fass

router = APIRouter(
    prefix="/chat"
)

# 初始化pdf文件
@router.get("/init_pdf")
async def init_pdf():
    # pfd文件路径
    pdf_doc = "xxx.pdf"

    # get pdf text
    raw_text = pdf.get_pdf_text(pdf_doc)

    # get the text chunks
    text_chunks = openai.get_text_chunks(raw_text)

    # save
    fass.save_vector_store(text_chunks)

    return {'success': True}


# 问答
@router.post("/question")
async def question(
        text: str = Body(embed=True)
):
    vector_store = fass.load_vector_store()

    chain = langchain.get_qa_chain(vector_store)

    response = chain({"query": text})
    
    return {'success': True, "code": 0, "reply": response}


1)初始化 pdf 文件

执行接口不报错的话,会看到项目同级目录下会多了一个 faiss 目录,里面包括两个索引文件。

 2)配置 OpenAI 

因为项目使用到 OpenAI 的接口,所以我们这边需要全局配置 api-key,还有我们云函数上的代理地址。

from fastapi import FastAPI
from app.routers import chat
import sys
import os
from dotenv import load_dotenv, find_dotenv
import openai

load_dotenv(find_dotenv())
openai.api_key = os.getenv("OPENAI_API_KEY")
openai.api_base = os.getenv("OPENAI_API_BASE")

# 防止相对路径导入出错
sys.path.append(os.path.join(os.path.dirname(__file__)))

app = FastAPI()


# 将其余单独模块进行整合
app.include_router(chat.router)

 调整后的 main.py 文件如上图,项目中需要加入 .env 文件

OPENAI_API_KEY=
OPENAI_API_BASE=https://xxxxxx/v1

要注意api_base的地址后面,一般云函数地址的后面要加上 /v1 

四、运行和测试

至此,一个简单的基于 LangChain 库的 PDF文档问答就完成了,我们随便拿一份网上能找到保险pdf做个实验,看看效果如何

我们就来问 pdf 中的这段内容,问题是 "风险的特征有哪些?"

 我们来看看回复,几个大的要点也基本答上来了,效果也算可以了。

{
    "success": true,
    "code": 0,
    "reply": {
        "query": "风险的特征有哪些?",
        "result": "风险的特征包括以下几个方面:\n1. 风险的客观性:风险是一种客观存在,与人的意志无关,独立于人的意识之外的客观存在。\n2. 风险的普遍性:在社会经济生活中,人们面临各种各样的风险,从个人、企业到国家和政府机关都无处不在。\n3. 风险的损害性:风险与人们的经济利益密切相关,会给人们的经济造成损失以及对人的生命造成伤害。\n4. 某一风险发生的不确定性:虽然风险是客观存在的,但对某一具体风险而言,其发生是偶然的,是一种随机现象。\n5. 总体风险发生的可测性:虽然个别风险事故的发生是偶然的,但大量风险事故往往呈现出明显的规律性,可以通过统计方法进行准确测量。"
    }
}

我们再尝试问一些不在 pdf 里的问题,"如何评价中国足球"

{
    "success": true,
    "code": 0,
    "reply": {
        "query": "如何评价中国足球",
        "result": "根据已知内容无法回答该问题。"
    }
}

这跟我们上面 自定义提示 PromptTemplate 的内容是一致的。

最后附上 仓库地址

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/72007.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SQL常见命令语句

1.连接数据库 mysql (-h IP) -u root -p 密码2.查看数据库 show databases3.使用数据库 use db_name4.查看表 show tables [from db_name]5.查看表结构 desc tb_name6.创建、删除、选择数据库 create database db_namedrop database db_nameuse db_name7.数据类型 参考链…

技术应用:Docker安全性的最佳实验|聊聊工程化Docker

🔥 技术相关:《技术应用》 ⛺️ I Love you, like a fire! 文章目录 首先,使用Docker Hub控制访问其次,保护密钥写在最后 不可否认,能生存在互联网上的软件都是相互关联的,当我们开发一款应用程序时&#x…

(二)结构型模式:1、适配器模式(Adapter Pattern)(C++实现示例)

目录 1、适配器模式(Adapter Pattern)含义 2、适配器模式应用场景 3、适配器模式的UML图学习 4、C实现适配器模式的示例 1、适配器模式(Adapter Pattern)含义 将一个接口转换为客户端所期待的接口,从而使两个接口…

JVM 查看配置 jinfo 及使用 jstat,查看堆栈jstack及GC

1. Jinfo 查看正在运行的Java应用程序的扩展参数: 包含 JVM 参数与 java 系统参数 命令: jinfo pid 2 jstat 查看堆内存使用情况及 GC 回收频率等: jstat [-命令选项] [vmid] [间隔时间(毫秒)] [查询次数] 2.1 jstat -gc pid 最常用,可…

MySQL数据库----------安装anaconda---------python与数据库的链接

作者前言 🎂 ✨✨✨✨✨✨🍧🍧🍧🍧🍧🍧🍧🎂 ​🎂 作者介绍: 🎂🎂 🎂 🎉🎉&#x1f389…

【Linux】进程间通信之管道

【Linux】进程间通信之管道 进程间通信进程间通信目的进程间通信的方式 管道(内核维护的缓冲区)匿名管道(用于父子间进程间通信)简单使用阻塞状态读写特征非阻塞状态读写特征 匿名管道特点命名管道 匿名管道与命名管道的区别 进程…

时序预测 | MATLAB实现基于CNN卷积神经网络的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于CNN卷积神经网络的时间序列预测-递归预测未来(多指标评价) 目录 时序预测 | MATLAB实现基于CNN卷积神经网络的时间序列预测-递归预测未来(多指标评价)预测结果基本介绍程序设计参考资料 预测结果 基本介绍 1.Matlab实现CNN卷积神经网络时间序列预测未…

中国首款量子计算机操作系统本源司南 PilotOS正式上线

中国安徽省量子计算工程研究中心近日宣布,中国国产量子计算机操作系统本源司南 PilotOS 客户端正式上线。 如果把量子芯片比喻成人的“心脏”,那么量子计算机操作系统就相当于人的“大脑”,量子计算应用软件则是人的“四肢”。 据安徽省量子…

C++入门篇7---string类

所谓的string类,其实就是我们所说的字符串,本质和c语言中的字符串数组一样,但是为了更符合C面向对象的特性,特地将它写成了一个单独的类,方便我们的使用 对其定义有兴趣的可以去看string类的文档介绍,这里…

运维监控学习笔记3

DELL的IPMI页面的登录: 风扇的状态: 电源温度:超过70度就告警: 日志信息: 可以看到更换过磁盘。 iDRAC的设置 虚拟控制台:启动远程控制台: 可以进行远程控制。 机房工程师帮我们接远程控制&…

opencv 基础54-利用形状场景算法比较轮廓-cv2.createShapeContextDistanceExtractor()

注意:新版本的opencv 4 已经没有这个函数 cv2.createShapeContextDistanceExtractor() 形状场景算法是一种用于比较轮廓或形状的方法。这种算法通常用于计算两个形状之间的相似性或差异性,以及找到最佳的匹配方式。 下面是一种基本的比较轮廓的流程&…

Dynamic CRM开发 - 实体介绍

实体简介 在CRM中,实体(Entity)是数据的基本载体,也是构建业务逻辑网络的基础节点。 实体可以理解为数据库中的一张表(实体中的字段对应数据库表的字段),比如创建一个实体存储客户信息,创建一个实体存储产品信息,产品实体里可以创建一个查找类型的字段(类似表的外键)…

Json简述(C++)

目录 1.介绍 2.格式 3.底层 3.1数据对象表示 3.2序列化接口 3.3反序列化接口 4.使用 1.介绍 Json(JavaScript Object Notation)是一种轻量级的数据交换格式,其最早是为JavaScript编程语言设计的格式。不过发发展至今,Jso…

C++——缺省参数

缺省参数的定义 缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数的时候&#xff0c;如果没有指定实参&#xff0c;则采用该形参的缺省值&#xff0c;否则使用指定的实参。 void Func(int a 0) {cout << a << endl; } int main() { Func()…

并查集的原理与实现

1.概念 2.生活中的例子 小弟-老大&#xff1b; 帮派识别 3.实现 3.1 初始化 3.2 中间过程 3.3合并 3.4 并查集路径优化 直接把下面的节点指向最终的老大。 3.5 伪代码实现 3.6JAVA实现 findRoot: 谁是帮派的老大。例如山鸡的老大是陈浩南 connected: 我们是不是同一个大…

Golang服务的请求调度

文章目录 1. 写在前面2. SheddingHandler的实现原理3. 相关方案的对比4. 小结 1. 写在前面 最近在看相关的Go服务的请求调度的时候&#xff0c;发现在gin中默认提供的中间件中&#xff0c;不含有请求调度相关的逻辑中间件&#xff0c;去github查看了一些服务框架&#xff0c;发…

软工导论知识框架(八)面向对象设计风格

一.面向对象实现 把面向对象设计结果翻译成面向对象程序测试并调试面向对象的程序 二.程序设计语言 所有语言都可完成面向对象实现&#xff0c;但效果不同。 使用非面向对象语言编写面向对象程序&#xff0c;则必须由程序员自己把面向对象概念映射到目标程序中。 1.将来能够占…

Ubuntu常用配置

文章目录 1. 安装VMware虚拟机软件2. 下载Ubuntu镜像3. 创建Ubuntu虚拟机4. 设置屏幕分辨率5. 更改系统语言为中文6. 切换中文输入法7. 修改系统时间8. 修改锁屏时间9. 通过系统自带的应用商店安装软件10. 安装JDK11. 安装 IntelliJ IDEA12. 将左侧任务栏自动隐藏13. 安装docke…

用户数据报协议UDP

UDP的格式 载荷存放的是:应用层完整的UDP数据报 报头结构: 源端口号:发出的信息的来源端口目的端口号:信息要到达的目的端口UDP长度:2个字节(16位),即UDP总长度为:2^16bit 2^10bit * 2^6bit 1KB * 64 64KB.所以一个UDP的最大长度为64KBUDP校验和:网络的传输并非稳定传输,…

css3背景渐变

1.线性渐变 <style>.box {width: 200px;height: 200px;border: 1px solid black;float: left;margin-left: 50px;}.box1 {background-image: linear-gradient(green, yellow, red);}/* 右上 */.box2 {background-image: linear-gradient(to right top, green, yellow, re…