实战 | 基于YOLOv10的车辆追踪与测速实战【附源码+步骤详解】

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【车辆检测追踪与流量计数系统】
49.【行人检测追踪与双向流量计数系统】50.【基于YOLOv8深度学习的反光衣检测与预警系统】
51.【危险区域人员闯入检测与报警系统】52.【高密度人脸智能检测与统计系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

引言

在人工智能神经网络和计算机视觉的世界里,识别并跟踪物体是一项至关重要的技术。本文主要介绍一个深度学习项目,该项目利用YOLOv10算法来检测车辆并且测量马路上汽车的速度。通过这个项目,您可以更深入地理解这些算法是如何融入我们的日常解决方案中的。

实现效果

在这里插入图片描述
在这里插入图片描述

实现步骤

下载yolov10源码

下载地址:https://github.com/THU-MIG/yolov10

在这里插入图片描述

安装运行环境

conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
pip install -e .

下载v10n模型

下载官方提供的与训练模型,这里我们直接使用yolov10n.pt
在这里插入图片描述

代码测试

运行完整代码:

from ultralytics import YOLOv10
from ultralytics.solutions import speed_estimation
import cv2

# 加载YOLOv10模型
model = YOLOv10("yolov10n.pt")
# 获取模型中的对象名称
names = model.model.names

# 打开视频文件
cap = cv2.VideoCapture("9.mp4")

# 获取视频的宽度、高度和帧率
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# 创建视频写入器,用于输出处理后的视频
video_writer = cv2.VideoWriter("out.avi",
                               cv2.VideoWriter_fourcc(*'mp4v'),
                               fps,
                               (w, h))

# 设置测速线段的两个端点
line_pts = [(0, 180), (640, 180)]

# 初始化速度估计器
speed_obj = speed_estimation.SpeedEstimator()
# 设置速度估计器的参数,包括测速线段、对象名称和是否显示图像
speed_obj.set_args(reg_pts=line_pts,
                   names=names,
                   view_img=True)

# 循环读取视频帧
while cap.isOpened():
    # 读取一帧
    success, im0 = cap.read()
    # 如果读取失败,则退出循环
    if not success:
        break
    tracks = model.track(im0, persist=True, show=False)
    im0 = speed_obj.estimate_speed(im0, tracks)
    video_writer.write(im0)

# 释放视频读取器和写入器
cap.release()
video_writer.release()
# 销毁所有OpenCV窗口
cv2.destroyAllWindows()

代码详细解读

下面是对上述代码的详细解释说明:

  1. 导入必要的库

    from ultralytics import YOLOv10
    from ultralytics.solutions import speed_estimation
    import cv2
    

    这段代码导入了ultralytics库中的YOLOv10模型和速度估计模块,以及OpenCV库,用于视频处理。

  2. 加载YOLOv10模型

    model = YOLOv10("yolov10n.pt")
    names = model.model.names
    

    这里加载了预训练的YOLOv10模型,用于识别车辆

  3. 读取视频文件

    cap = cv2.VideoCapture("9.mp4")
    assert cap.isOpened(), "Error reading video file"
    w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
    

    这段代码读取名为"9.mp4"的视频文件,并获取视频的宽度、高度和帧率。

  4. 创建视频写入器

    video_writer = cv2.VideoWriter("out.avi", cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
    

    这里创建了一个视频写入器,用于将处理后的视频帧写入新的视频文件。

  5. 设置速度估计参数

    line_pts = [(0, 180), (640, 180)]
    speed_obj = speed_estimation.SpeedEstimator()
    speed_obj.set_args(reg_pts=line_pts, names=names, view_img=True)
    

    这段代码设置了用于速度估计的参考线(line_pts),并初始化了速度估计器,同时设置了相关参数。
    速度计算的基本原理:
    SpeedEstimator函数通过存储随时间推移的跟踪位置来处理帧,因此通过比较当前位置与定义区域内的先前位置来计算每个检测到的物体的速度,从而可以通过物体在该区域内移动所需的时间来估算物体的速度,这遵循了物理学中一个非常著名的术语:
    v = Δs/Δt
    其中,v为速度,Δs为位移(距离),Δt为时间间隔。

  6. 视频帧处理循环

    while cap.isOpened():
        success, im0 = cap.read()
        if not success:
            print("Video frame is empty or video processing has been successfully completed.")
            break
        tracks = model.track(im0, persist=True, show=False)
        im0 = speed_obj.estimate_speed(im0, tracks)
        video_writer.write(im0)
    

    在这个循环中,代码逐帧读取视频,使用YOLOv10模型进行对象跟踪,然后使用速度估计器估计对象的移动速度,并将结果写入新的视频文件。

  7. 释放资源

    cap.release()
    video_writer.release()
    cv2.destroyAllWindows()
    

    最后,释放视频读取器和写入器的资源,并关闭所有OpenCV创建的窗口。

总结

这段代码的主要功能是使用YOLOv10模型对视频中的对象进行跟踪,并估计它们通过特定线段的速度。但是该方法受硬件检测速度等影响,计算出的速度不是特别准确。如果需要准确的计算车速,最好结合实际场景给出距离参考对象,这样计算出的速度才会更加准确。


好了,这篇文章就介绍到这里,感谢点赞关注,更多精彩内容持续更新中~

关注文末名片G-Z-H:【阿旭算法与机器学习】,可获取更多干货学习资源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/717002.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

音频文件下载后,如何轻松转换格式?

在我们日常的数字生活中,下载各种音频文件是司空见惯的事情。然而,有时候我们可能需要将这些音频文件转换为不同的格式,以适应不同的设备或编辑需求。无论您是希望将下载的音频文件转换为通用的MP3格式,还是需要将其转换为高保真的…

eNSP学习——OSPF在帧中继网络中的配置

目录 主要命令 原理概述 实验目的 实验场景 实验拓扑 实验编址 实验步骤 1、基本配置 2、在帧中继上搭建OSPF网络 主要命令 //检查帧中继的虚电路状态 display fr pvc-info//检查帧中继的映射表 display fr map-info//手工指定OSPF邻居,采用单播方式发送报文 [R1]os…

Scala入门【安装与使用、变量与数据类型、运算符、函数、条件判断、循环、字符串、面向对象、数组】

视频地址:Scala大专/本科专用课程_哔哩哔哩_bilibili 目录 P01【01Scala安装与使用】16:15 P02【02变量与数据类型】17:14 P03【03运算符】12:41 P04【04函数】16:40 P05【05条件判断】10:56 P06【06循环】13:33 P07【07字符串】19:09 P08【08面向对象】17:27 P09【0…

栅格数据实现最优参数地理探测器(OPGD)详细教程!(上)

数据准备 要探寻一堆因素对因变量的影响,首先你要确定要用哪些自变量来影响哪个因变量 想好了之后 你需要到相应的网站去下载你的研究区的自变量和因变量数据的栅格数据(可以是离散的,也可以是连续的) 后续操作是到Arcgis里对你的数据处理一下 由于不是教程的重点,这里就…

电脑微信聊天记录监控要怎么做?找谁找?

电脑微信聊天记录的监控通常涉及到使用特定的监控软件,这些软件设计用于企业管理和网络监控,以确保工作场所的通信安全和提高工作效率。以下是进行电脑微信聊天记录监控的一般步骤和建议: 如何进行监控: 1.明确目的与合法性&…

滑动窗口(LeeCode209题,以JS为例)

什么是滑动窗口? 滑动窗口是算法中一种非常有用的技术,特别是在处理数据序列或数组时。它的核心思想是维护一个固定大小的窗口,这个窗口在数据序列上滑动,以便于在窗口内的元素上进行操作或计算。滑动窗口技术通常用于解决与数据…

2024年粤港澳青少年信息学创新大赛图形化编程小低组真题试卷

2024年粤港澳青少年信息学创新大赛图形化编程小低组真题试卷 题目总数:16 总分数:100 单选题 第 1 题 单选题 默认小猫角色,以下哪个Scratch程序可以在点击绿旗后让小猫说”你好!"一共10秒? A. B. C. D. 第 2 题 单选题 …

如何根据使用场景选购3D扫描仪?

三维扫描建模是指通过专业的三维扫描仪对产品进行三维数据的采集,快速获取物体精确的3D数据,实现1:1复刻原物体,扫描后所得的数字化3D模型以obj、fbx、glb、gltf等格式保存。 积木易搭自主研发多款三维扫描设备,拥有多项国家专利&…

[240617] RFC 9562-UUIDs,取代原来的 RFC 4122 | ChatGPT 导致线上自由职业者的需求大幅下降

目录 RFC 9562 - UUIDs - 2405发布,取代原来的 RFC 4122ChatGPT 导致线上自由职业者的需求大幅下降 RFC 9562 - UUIDs - 2405发布,取代原来的 RFC 4122 这份 RFC 中包含了 UUID 八个版本的 定义,但看点是在新引入 v6, v7, v8 详细标准文本可…

剧本杀小程序开发,线上剧本杀游戏新体验

近几年,剧本杀行业快速崛起,吸引了广大年轻人的眼光,成为年轻人社交娱乐的新选择。剧本杀在线上也崭露头角,获得大众的关注,性价比高的优势成为了大众玩剧本杀的首要方式。 随着互联网的快速发展,年轻人都…

windows11子系统Ubuntu 22.04.4子安装图形化界面

1、windows11家庭版本设置 打开虚拟机安装许可 2、Microsoft Store下载安装ubuntu 我使用的是22.04.4 LTS版本 3、 打开ubuntu 命令窗口 1、打开win11的命令行,在下拉三角下标,打开,可以看到有Ubuntu 的选项,点击即可进入linux命…

网络层只懂路由?这9个知识点被严重低估了

号主:老杨丨11年资深网络工程师,更多网工提升干货,请关注公众号:网络工程师俱乐部 下午好,我的网工朋友。 网络层想必你已经耳熟能详,它的作用自然是不容小觑。 它负责将数据从源头准确地投递到目的地&am…

【大语言模型】本地快速部署Ollama运行大语言模型详细流程

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

【源码】Spring事务之事务失效及原理

Spring事务 1、【源码】SpringBoot事务注册原理 2、【源码】Spring Data JPA原理解析之事务注册原理 3、【源码】Spring Data JPA原理解析之事务执行原理 4、【源码】SpringBoot编程式事务使用及执行原理 5、【源码】Spring事务之传播特性的详解 6、【源码】Spring事务之…

怎么将经典动漫秒变高清动漫?

你的记忆中是否也有一部经典的动漫、动画片。那是我们童年的美好记忆,但是我们现在如果再去重温时往往会因为太模糊而看不下去,那么我们有什么好的办法可以修复动漫的清晰度呢?一起来看看吧! 不管是修复动画片,还是修复…

SelfGNN: Self-Supervised Graph Neural Networks for Sequential Recommendation

SelfGNN: Self-Supervised Graph Neural Networks for Sequential Recommendation(Sigir2024) 摘要 顺序推荐通过对用户的时间和顺序交互模式进行建模,有效地解决信息过载问题。 为了克服监督信号的局限性,最近的方法在推荐系统中…

Hyper-V如何将文件复制到虚拟机?教您3个简单的方法!

需要将文件复制到虚拟机! “大家好,有谁知道Hyper-V怎么将文件复制到虚拟机吗?我有一些文件,想要从主机中复制进虚拟机中,但是我不知道该怎么操作,有谁可以帮帮我吗?谢谢。” Hyper-V虚拟机可…

Vuex遇到浏览器刷新,store里存的数据还在吗?

我们在做Vue前端项目的时候,很可能会使用Vuex来做一些状态或者数据管理,希望在一定程度上,不发送网络请求,不经过密集的组件数据传输,也可以达到数据共享的目的。但如果浏览器页面刷新了,Vuex中store里存的…

​1:25万基础电子地图(江西版)

我们在《50幅1:25万基础电子地图(四川版)》和《1:25基础电子地图(云南版)》等文中,为你分享过四川和云南的基础电子地图。 现在我们再为你分享江西的1:25万基础电子地图,你可以在文…

成都某展厅2套2x2透明OLED拼接屏项目

成都某展厅的2套2x2透明OLED拼接屏展示设计具有独特的技术魅力和视觉效果。以下是关于这一展示设计的详细介绍: 1.产品规格 类型:透明OLED拼接屏 尺寸与配置:每套为2x2拼接,即每套由4块屏幕组成。 2.应用场景 成都某展厅&#…