DETR实现目标检测(一)-训练自己的数据集

1、DETR架构

DETR(Detection Transformer)是一种新型的目标检测模型,由Facebook AI Research (FAIR) 在2020年提出。DETR的核心思想是将目标检测任务视为一个直接的集合预测问题,而不是传统的两步或多步预测问题。这种方法的创新之处在于它直接预测目标的类别和边界框,而不是先生成大量的候选区域,然后再对这些区域进行分类和边界框回归。

DERT的特点主要有二:

一是Transformer结构在CV网络中的应用;

二是提出了一种新的或者说不同的损失函数(Loss Function)。

2、模型下载

模型代码下载地址:

GitHub - facebookresearch/detr: End-to-End Object Detection with Transformers

预训练模型(即权重文件)下载地址:

GitHub - facebookresearch/detr: End-to-End Object Detection with Transformers

下载后放到项目下待使用:

3、labelme标注文件转为coco模式

首先,labelme标注的文件存放在指定位置,包含json和jpg文件

然后,利用代码将labelme的标注文件转化为coco。包含annotations(两个json文件)、train2017(训练集图片)、val2017(验证集图片)

备注:必须严格按照笔者图中的文件命名方式进行命名,训练集清一色命名为instances_train2017.json,验证集清一色命名为instances_val2017.json,这是模型本身的命名要求,用户需要严格遵守。

实现代码如下:

import json
from labelme import utils
import numpy as np
import glob
import PIL.Image


class MyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        else:
            return super(MyEncoder, self).default(obj)


class labelme2coco(object):
    def __init__(self, labelme_json=[], save_json_path='./tran.json'):
        self.labelme_json = labelme_json
        self.save_json_path = save_json_path
        self.images = []
        self.categories = []
        self.annotations = []
        # self.data_coco = {}
        self.label = []
        self.annID = 1
        self.height = 0
        self.width = 0

        self.save_json()

    def data_transfer(self):

        for num, json_file in enumerate(self.labelme_json):
            with open(json_file, 'r') as fp:
                data = json.load(fp)  # 加载json文件
                self.images.append(self.image(data, num))
                for shapes in data['shapes']:
                    label = shapes['label']
                    if label not in self.label:
                        self.categories.append(self.categorie(label))
                        self.label.append(label)
                    points = shapes['points']  # 这里的point是用rectangle标注得到的,只有两个点,需要转成四个点
                    points.append([points[0][0], points[1][1]])
                    points.append([points[1][0], points[0][1]])
                    self.annotations.append(self.annotation(points, label, num))
                    self.annID += 1

    def image(self, data, num):
        image = {}
        img = utils.img_b64_to_arr(data['imageData'])  # 解析原图片数据
        height, width = img.shape[:2]
        image['height'] = height
        image['width'] = width
        image['id'] = num + 1
        image['file_name'] = data['imagePath'].split('/')[-1]

        self.height = height
        self.width = width

        return image

    def categorie(self, label):
        categorie = {}
        categorie['supercategory'] = 'Cancer'
        categorie['id'] = len(self.label) + 1  # 0 默认为背景
        categorie['name'] = label
        return categorie

    def annotation(self, points, label, num):
        annotation = {}
        annotation['segmentation'] = [list(np.asarray(points).flatten())]
        annotation['iscrowd'] = 0
        annotation['image_id'] = num + 1
        annotation['bbox'] = list(map(float, self.getbbox(points)))
        annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
        annotation['category_id'] = self.getcatid(label)  # 注意,源代码默认为1
        annotation['id'] = self.annID
        return annotation

    def getcatid(self, label):
        for categorie in self.categories:
            if label == categorie['name']:
                return categorie['id']
        return 1

    def getbbox(self, points):
        polygons = points
        mask = self.polygons_to_mask([self.height, self.width], polygons)
        return self.mask2box(mask)

    def mask2box(self, mask):
        """从mask反算出其边框
        mask:[h,w]  0、1组成的图片
        1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
        """
        # np.where(mask==1)
        index = np.argwhere(mask == 1)
        rows = index[:, 0]
        clos = index[:, 1]
        # 解析左上角行列号
        left_top_r = np.min(rows)  # y
        left_top_c = np.min(clos)  # x

        # 解析右下角行列号
        right_bottom_r = np.max(rows)
        right_bottom_c = np.max(clos)

        return [left_top_c, left_top_r, right_bottom_c - left_top_c,
                right_bottom_r - left_top_r]  # [x1,y1,w,h] 对应COCO的bbox格式

    def polygons_to_mask(self, img_shape, polygons):
        mask = np.zeros(img_shape, dtype=np.uint8)
        mask = PIL.Image.fromarray(mask)
        xy = list(map(tuple, polygons))
        PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
        mask = np.array(mask, dtype=bool)
        return mask

    def data2coco(self):
        data_coco = {}
        data_coco['images'] = self.images
        data_coco['categories'] = self.categories
        data_coco['annotations'] = self.annotations
        return data_coco

    def save_json(self):
        self.data_transfer()
        self.data_coco = self.data2coco()
        # 保存json文件
        json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4, cls=MyEncoder)  # indent=4 更加美观显示


if __name__ == '__main__':
    labelme_json = glob.glob('data/LabelmeData_frame_count/val2017/*.json')  # labelme标注好的.json文件存放目录
    labelme2coco(labelme_json, 'data/coco_frame_count/annotations/instances_val2017.json')  # 输出结果的存放目录

4、修改训练模型参数

先在pycharm中新建python脚本文件detr_r50_tf.py,代码如下:

import torch

pretrained_weights = torch.load('detr-r50-e632da11.pth')

num_class = 1  # 类别数
pretrained_weights["model"]["class_embed.weight"].resize_(num_class + 1, 256)
pretrained_weights["model"]["class_embed.bias"].resize_(num_class + 1)
torch.save(pretrained_weights, "detr-r50_%d.pth" % num_class)

将其中类别数改成自己数据集的类别数即可,执行完成后会在目录下生成适合自己数据集类别的预训练模型:

然后在models文件夹下打开detr.py,修改其中的类别数(一定要全部保持一致):

最后打开main.py,修改其中的coco_path(数据存放路径)、output_dir(结果输出路径)、device(没有cuda就改为cpu)、resume(自己生成的预训练模型)。

5、执行main.py来开始训练模型

如果不想跑太多了轮可以修改epochs数:

训练好的模型会保存在结果输出路径中:

跑起来的效果是这样的:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/713888.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

FPGA IO_BANK、IO_STANDARD

描述 Xilinx 7系列FPGA和UltraScale体系结构提供了高性能(HP)和 高范围(HR)I/O组。I/O库是I/O块(IOB)的集合,具有可配置的 SelectIO驱动程序和接收器,支持多种标准接口 单端和差分。…

vxe-table表格新增节点

做前端的朋友可以参考下&#xff1a;也可结合实际需求查看相应的官方文档 效果图 附上完整代码 <template><div><vxe-toolbar ref"toolbarRef" :refresh"{queryMethod: searchMethod}" export print custom><template #buttons>&…

React写一个 Modal组件

吐槽一波 最近公司的项目终于度过了混乱的前期开发&#xff0c;现在开始有了喘息时间可以进行"规范"的处理了。 组件的处理&#xff0c;永远是前端的第一大任务&#xff0c;尤其是在我们的ui库并不怎么可靠的情况下&#xff0c;各个组件的封装都很重要&#xff0c;而…

minium小程序自动化

一、安装minium pip install minium二、新建config.json {"dev_tool_path": "D:\\Program Files (x86)\\Tencent\\微信web开发者工具\\cli.bat","project_path": "小程序项目路径" }三、编写脚本 import miniumclass FirstTest(min…

【Echarts系列】平滑折线面积图

【Echarts系列】平滑折线面积图 序示例数据格式代码 序 为了节省后续开发学习成本&#xff0c;这个系列将记录我工作所用到的一些echarts图表。 示例 平滑折线面积图如图所示&#xff1a; 数据格式 data [{name: 2020年,value: 150},{name: 2021年,value: 168},{name: 2…

设计模式-装饰器模式Decorator(结构型)

装饰器模式(Decorator) 装饰器模式是一种结构模式&#xff0c;通过装饰器模式可以在不改变原有类结构的情况下向一个新对象添加新功能&#xff0c;是现有类的包装。 图解 角色 抽象组件&#xff1a;定义组件的抽象方法具体组件&#xff1a;实现组件的抽象方法抽象装饰器&…

git的ssh安装,windows通过rsa生成密钥认证问题解决

1 windows下载 官网下载可能出现下载太慢的情况&#xff0c;Git官网下载地址为&#xff1a;官网&#xff0c;推荐官网下载&#xff0c;如无法下载&#xff0c;可移步至CSDN&#xff0c;csdn下载地址&#xff1a;https://download.csdn.net/download/m0_46309087/12428308 2 Gi…

【Linux】程序地址空间之动态库的加载

我们先进行一个整体轮廓的了解&#xff0c;随后在深入理解细节。 在动态库加载之前还要说一下程序的加载&#xff0c;因为理解了程序的加载对动态库会有更深的理解。 轮廓&#xff1a; 首先&#xff0c;不管是程序还是动态库刚开始都是在磁盘中的&#xff0c;想要执行对应的可…

PHP在线生成查询产品防伪证书系统源码

源码介绍 PHP在线生成查询产品防伪证书系统源码&#xff0c;源码自带90套授权证书模板&#xff0c;带PSD公章模板&#xff0c;证书PSD源文件。 环境要求&#xff1a;PHPMYSQL&#xff0c;PHP 版本请使用PHP5.1 ~5.3。 图片截图 源码安装说明 1.上传所有文件至你的空间服务器…

学会python——显示进度条(python实例五)

目录 1、认识Python 2、环境与工具 2.1 python环境 2.2 Visual Studio Code编译 3、进度条显示 3.1 代码构思 3.2 代码示例 3.3 运行结果 4、总结 1、认识Python Python 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。 Python 的设计具有很强的可读…

从零到爆款:用ChatGPT写出让人停不下来的短视频文案

一、前言 在自媒体的浪潮中&#xff0c;精彩的短视频文案对内容传播至关重要。众多辅助工具之中&#xff0c;凭借强大的语言处理能力和广泛的应用场景&#xff0c;ChatGPT成为了内容创作者的重要助力。接下来&#xff0c;我将介绍如何借助ChatGPT编写引人入胜的短视频文案&…

积木搭建游戏-第13届蓝桥杯省赛Python真题精选

[导读]&#xff1a;超平老师的Scratch蓝桥杯真题解读系列在推出之后&#xff0c;受到了广大老师和家长的好评&#xff0c;非常感谢各位的认可和厚爱。作为回馈&#xff0c;超平老师计划推出《Python蓝桥杯真题解析100讲》&#xff0c;这是解读系列的第83讲。 积木搭建游戏&…

Windows10 利用QT搭建SOEM开发环境

文章目录 一. SOEM库简介二. 安装WinPcap三. SOEM(1.4)库安装(1) 编译32位库(2) 编译64位库 四. 运行SOEM示例代码五. WIN10下利用QT构建SOEM开发环境 一. SOEM库简介 SOEM&#xff08;Scalable Open EtherCAT Master 或 Simple Open EtherCAT Master&#xff09;是一个开源的…

【OrangePiKunPengPro】 linux下编译、安装Boa服务器

OrangePiKunPengPro | linux下编译、安装Boa服务器 时间&#xff1a;2024年6月7日21:41:01 1.参考 1.boa- CSDN搜索 2.Boa服务器 | Ubuntu下编译、安装Boa_ubuntu安装boa-CSDN博客 3.i.MX6ULL—ElfBoard Elf1板卡 移植boa服务器的方法 (qq.com) 2.实践 2-1下载代码 [fly752fa…

python将数据保存到文件的多种实现方式

&#x1f308;所属专栏&#xff1a;【python】✨作者主页&#xff1a; Mr.Zwq✔️个人简介&#xff1a;一个正在努力学技术的Python领域创作者&#xff0c;擅长爬虫&#xff0c;逆向&#xff0c;全栈方向&#xff0c;专注基础和实战分享&#xff0c;欢迎咨询&#xff01; 您的…

EasyRecovery2024数据恢复神器#电脑必备良品

EasyRecovery数据恢复软件&#xff0c;让你的数据重见天日&#xff01; 大家好&#xff01;今天我要给大家种草一个非常实用的软件——EasyRecovery数据恢复软件&#xff01;你是不是也曾经遇到过不小心删除了重要的文件&#xff0c;或者电脑突然崩溃导致数据丢失的尴尬情况呢&…

手机照片免费数据恢复软件EasyRecovery2024免费版下载

大家好&#xff01;今天我要给大家推荐一款非常棒的软件——EasyRecovery。相信大家都知道&#xff0c;电脑中的重要文件一旦丢失&#xff0c;对我们的工作和学习都会产生很大的影响。 而EasyRecovery软件就是专门解决这个问题的利器&#xff01;它能够帮助我们快速、有效地恢…

第三篇—基于黑白样本的webshell检测

本篇为webshell检测的第三篇&#xff0c;主要讲的是基于黑白样本的webshell预测&#xff0c;从样本收集、特征提取、模型训练&#xff0c;最后模型评估这四步&#xff0c;实现一个简单的黑白样本预测模型。   若有误之处&#xff0c;望大佬们指出 Ⅰ 基本实现步骤 样本收集&…

Unity中的伽马(Gamma)空间和线性(Linear)空间

伽马空间定义&#xff1a;通常用于描述图像在存储和显示时的颜色空间。在伽马空间中&#xff0c;图像的保存通常经过伽马转换&#xff0c;使图片看起来更亮。 gamma并不是色彩空间&#xff0c;它其实只是如何对色彩进行采样的一种方式 为什么需要Gamma&#xff1a; 在游戏业…

53. QT插件开发--插件(动态库so)的调用与加载

1. 说明 在使用QT进行插件库的开发之后,还需要将这个插件库程序生成的so动态链接库加载到主程序框架中进行使用,才能达到主程序的模块化开发的效果。在前一篇文章插件创建中介绍了如何在QT中开发插件库,并提供外部接口调用。本篇博客的主要作用是模拟在主程序框架中加载动态…