Linux DMA-Buf驱动框架

一、DMABUF 框架

dmabuf 是一个驱动间共享buf 的机制,他的简单使用场景如下:

在这里插入图片描述

用户从DRM(显示驱动)申请一个dmabuf,把dmabuf 设置给GPU驱动,并启动GPU将数据输出到dmabuf,GPU输出完成后,再将dmabuf设置到DRM 驱动,完成画面的显示。

在这个过程中通过共享dmabuf的方式,避免了GPU输出数据拷贝到drm frame buff的动作。

如下所示,dmabuf 框架分为用户层和驱动层,用户层可以通过 /dev/dmabuf_heap/xxx节点,从名称为xxx的dma heap 中申请dmabuf。申请到的dmabuf 在用户层的视角就是一个文件,并由fd 标识一个dmabuf。将fd 通过DRM、GPU接口传给驱动,驱动就能共享这个dmabuf。

以下是一个简单的dmabuf 的示例代码:

int fd, dmabuf_fd;
struct dma_heap_allocation_data data;
struct pollfd fds;

data.len = 1024 * 1024 * 4;
//打开dma heap
fd = open("/dev/dma-heap/xxx");

//从dma heap 申请dmabuf
ioctl(fd, DMA_HEAP_IOCTL_ALLOC, &data);

//将dmabuf的fd 设置到gpu进行处理
set_dmabuf_to_gpu(data.fd);

//等待gpu 输出完毕
fds.fd = data.fd;
fds.events = POLLIN | POLLOUT;
poll(fds, 1, TIMEOUT);

//将dmabuf 设置到drm显示
set_dmabuf_to_drm(data.fd);

//等待显示完成
poll(fds, 1, TIMEOUT);

//释放dmabuf
close(data.fd);

二、DMA Heap

dma heap 就是一个dmabuf 内存池,让用户可以从内存池中申请dmabuf。其代码主要在dma-heap.c,设备驱动可以创建自己的dma heap,从而提供给用户申请dmabuf。例如DRM驱动可以创建一个DRM dma heap。DRM驱动最重要的就算实现struct dma_heap_ops 对象,这个对象需要实现allocate() 函数,即当用户从dma heap 申请dmabuf 时,DRM驱动要如何分配真实的物理内存。

struct dma_heap_ops {
	int (*allocate)(struct dma_heap *heap,
			unsigned long len,
			unsigned long fd_flags,
			unsigned long heap_flags);
};

struct dma_heap {
	const char *name;
	const struct dma_heap_ops *ops; //主要实现申请dmabuf的回调函数
	void *priv;
	dev_t heap_devt;
	struct list_head list;
	struct cdev heap_cdev;
};

dma-heap.c 中其他的代码主要是实现一个简单设备驱动,提供接口给用户。

三、dmabuf

3.1、dmabuf使用场景

在dmabuf 的使用场景中,有两种驱动:exporter 和 importer。

  • exporter 是dmabuf 的提供者,是实现dma heap的驱动程序,负责dmabuf 对应的物理内存的申请、释放、映射等实现。
  • importer 是dmabuf的使用者,是使用dmabuf 进行输入输出数据的驱动程序,他不关心dmabuf的申请释放,只需要往dmabuf 里读写数据即可。

像上述例子中,DRM驱动首先是exporter,允许用户从dma heap申请内存,又是importer,从dmabuf 中读取数据显示到屏幕。而GPU是纯纯的importer,向dmabuf 中写入数据。

这两种角色的关系如下图所示:

在这里插入图片描述

从上述图可见dma_buf_ops 的实现至关重要。所以接下来我们关注dmabuf是如何被创建的。

3.2、dmabuf的创建

dmabuf 是如何从dma heap 中被申请出来的?这部分主要是在allocate回调函数实现的,在大部分驱动中,allocate回调函数中会从物理内存中申请内存,并 调用dma_buf_export() 创建一个dmabuf 对象。

所以我们的重点将分析 dma_buf_export() 函数是如何创建一个dmabuf 对象的。

首先还是看dmabuf 的结构体定义:

struct dma_buf {
	size_t size;
	struct file *file;                 //匿名文件,代表该dmabuf,暴露给用户从而支持跨驱动传输
	struct list_head attachments;      //attachment 链表
	const struct dma_buf_ops *ops;     //重要的回调函数
	void *vmap_ptr;                    //dmabuf kernel 地址
	struct dma_resv *resv;             //保留区,用于存放dma fence对象
	/* poll support */
	wait_queue_head_t poll;            //等待队列,用于poll
	struct dma_buf_poll_cb_t {
		struct dma_fence_cb cb;
		wait_queue_head_t *poll;

		__poll_t active;
	} cb_excl, cb_shared;              //用于poll、dma fence
};

以下是dma_buf_export() 的简略版,很简单就是根据exp_info 初始化dmabuf对象,并创建一个文件,将dmabuf 与文件绑定起来。

struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
{
	//初始dmabuf 对象
	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
	dmabuf->priv = exp_info->priv;
	dmabuf->ops = exp_info->ops;
	dmabuf->size = exp_info->size;
	dmabuf->exp_name = exp_info->exp_name;
	dmabuf->owner = exp_info->owner;
	spin_lock_init(&dmabuf->name_lock);
	init_waitqueue_head(&dmabuf->poll);
	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;

	if (!resv) {
		resv = (struct dma_resv *)&dmabuf[1];
		dma_resv_init(resv);
	}
	dmabuf->resv = resv;

    //初始化file
	file = dma_buf_getfile(dmabuf, exp_info->flags);
	file->f_mode |= FMODE_LSEEK;
	dmabuf->file = file;

	mutex_init(&dmabuf->lock);
	INIT_LIST_HEAD(&dmabuf->attachments);
	
    //添加到全局链表
	mutex_lock(&db_list.lock);
	list_add(&dmabuf->list_node, &db_list.head);
	mutex_unlock(&db_list.lock);

	return dmabuf;
}

3.3、dma_buf_ops

exporter驱动只关注struct dma_buf_export_info 对象即可,最重要的是struct dma_buf_ops对象的实现,这点需要根据具体的驱动实现。所以下面分析这些回调函数的含义是什么:

struct dma_buf_ops {
	//判断当前设备是否能够访问dmabuf的物理内存,一些物理内存只能由指定的设备访问如vram。若设备可以访问改物理内存,则返回一个attachment代表此次访问
	int (*attach)(struct dma_buf *, struct dma_buf_attachment *);

	//释放之前获取的attachment
	void (*detach)(struct dma_buf *, struct dma_buf_attachment *);

	//importer 调用这个函数,锁定dmabuf的物理内存,使其不能被迁移
	int (*pin)(struct dma_buf_attachment *attach);

	//解锁物理内存
	void (*unpin)(struct dma_buf_attachment *attach);

    //将dmabuf的物理内存映射到importer的地址空间,表示importer要开始访问物理内存
    //因为exporter要让所以attach的设备都能访问,所以可能要将物理内存移动到合适的地址,所以函数可能休眠
    //返回一个sg_table,表示物理地址散列表
	struct sg_table * (*map_dma_buf)(struct dma_buf_attachment *,
					 enum dma_data_direction);

    //解除映射并释放sg_table
	void (*unmap_dma_buf)(struct dma_buf_attachment *,
			      struct sg_table *,
			      enum dma_data_direction);

	//释放dmabuf,exporter在这个函数释放私有数据
	void (*release)(struct dma_buf *);

	//importer在使用cpu读取dmabuf前,调用该接口让exporter 确保数据在内存上且cpu能读取到正确的数据
	int (*begin_cpu_access)(struct dma_buf *, enum dma_data_direction);

	//结束cpu 访问
	int (*end_cpu_access)(struct dma_buf *, enum dma_data_direction);

	//将dmabuf 物理内存map 到用户地址空间
	int (*mmap)(struct dma_buf *, struct vm_area_struct *vma);

    //将dmabuf 物理内存map到内核地址空间
	void *(*vmap)(struct dma_buf *);
	void (*vunmap)(struct dma_buf *, void *vaddr);
};

dmabuf框架将一个驱动访问物理内存的动作拆分成这么多个步骤,目的就是为了多个设备能共享一个物理内存,而每个设备的访问能力,访问地址空间都可能不一样,这就需要将访问过程细细拆分,协调好每个设备的访问顺序和关系。

四、dma-fence

dma fence 是用于做同步的。考虑以下场景:

一个dmabuf,先由GPU完成渲染,然后再交给DRM进行显示输出。那么GPU渲染完成后,如何通知DRM进行显示输出呢?也就是GPU和DRM之前如何进行同步?这就需要引入fence用于设备间的同步,fence用于表示一个操作的完成状态,故fence有两个状态,not done和done。

首先GPU在开始渲染操作前,创建一个fence,注册回调函数,将fence添加到dmabuf 中,随后DRM 等待该fence done。当GPU渲染完成中断上来后,会通知fence done。随后DRM线程被唤醒,进行显示操作。

另外,dma fence还需要考虑多设备访问的情况,即可能有多个设备在等待fence完成,那么fence就必须支持多个设备的等待。

那么就先看dma fence的定义:

struct dma_fence {
	spinlock_t *lock;
	const struct dma_fence_ops *ops;
	union {
		struct list_head cb_list;  //回调函数链表,每个等待fence的驱动,都需要注册一个回调节点到该链表,当fence done时,会遍历该链表执行所有驱动的回调函数。
		/* @cb_list replaced by @timestamp on dma_fence_signal() */
		ktime_t timestamp;
		/* @timestamp replaced by @rcu on dma_fence_release() */
		struct rcu_head rcu;
	};
	u64 context;
	u64 seqno;
	unsigned long flags;
	struct kref refcount;
	int error;
};

如图所示:GPU线程会在操作dmabuf 前,创建fence,并等待fence完成,同时DRM也会等待该fence完成。当GPU渲染完成中断产生后,会调用fence done,依次唤醒GPU、DRM线程,GPU线程此时就可以继续下一帧图像的渲染,而DRM就可以将已经完成渲染的图像显示到屏幕。

在这里插入图片描述

这个过程中调用的接口有:

  1. dma_fence_init():初始化一个dma fence对象
  2. dma_resv_reserve_shared() :从dma resv 中保留一个share fence 指针
  3. dma_resv_add_shared_fence():将dma fence添加到resv 对象
  4. dma_fence_default_wait():向dma fence注册回调函数dma_fence_default_wait_cb,并睡眠等待dma fence完成
  5. dma_fence_signal():标志dma fence 完成,并回调dma fence 中的所有回调函数

其中有一个叫dma_resv的对象,简单来说dma_resv 是一个存放dma fence的地方,一个dmabuf 可能同时有若干个dma fence,且dma fence还有共享和独占两种。dma_resv可以理解为一块内存区域,专门存放dma fence的,故要将dma fence添加到dmabuf时,要先调用dma_resv_reserve_shared() 预留出dma fence的位置,然后再调用dma_resv_add_shared_fence() 添加到dma resv。

五、poll

前面所述都是在内核态,但对于用户来说,也希望获取到设备的同步信息。例如在本文一开始的例子中,用户会使用poll 系统调用等待gpu渲染完成。这一切都是由dma_buf_fops来实现的。

在3.2中提到dmabuf的创建中,有一个步骤会创建匿名文件,这个匿名文件就是用于暴露给用户的接口。这个文件代表了一个dmabuf,用户通过该文件的fd可以操作该dmabuf的一些功能,dma_buf_fops是所有dmabuf 共享的file_operations,其中就包括poll的实现。

当用户调用poll 系统调用等待dmabuf时,会遍历dmabuf 上的所有fence,并将回调函数dma_buf_poll_cb注册到每一个fence上,并进入休眠。当有任意一个fence done时,就会唤醒用户线程,从而退出poll。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/712826.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vscode flake8插件 python代码语法格式检测/代码过长等误报设置

在vscode中python格式检测使用flake8插件很方便,但是经常会报出一些不必要错误,影响开发效率,忽略这些错误可以帮助减少对于特定项目可能不太关键的PEP 8警告或代码风格问题的干扰,特别是在项目有自己的格式化和编码标准时。使用f…

一款经典BUCK DCDC降压芯片TPS5430适合24V转5V转12V及其电路图

前言: TPS5430封装和丝印 经典老款DCDC,适合24V转5V、24V转12V及其它24V转其它电压降压使用,对于输入电压较低,如输入12V电压的,不推荐使用该芯片,该芯片出现时间较长,且非同步整流芯片&#xf…

React@16.x(29)useRef

目录 1,介绍2,和 React.createRef() 的区别3,计时器的问题 目前来说,因为函数组件每次触发更新时,都会重新运行。无法像类组件一样让一些内容保持不变。 所以才出现了各种 HOOK 函数:useState,u…

北方工业大学24计算机考研情况,学硕专硕都是国家线复试!

北方工业大学(North China University of Technology,NCUT),简称“北方工大”,位于北京市,为一所以工为主、文理兼融,具有学士、硕士、博士培养层次的多科性高等学府,是中华人民共和…

Python读取wps中的DISPIMG图片格式

需求: 读出excel的图片内容,这放在微软三件套是很容易的,但是由于wps的固有格式,会出现奇怪的问题,只能读出:类似于 DISPIMG(“ID_2B83F9717AE1XXXX920xxxx644C80DB1”,1) 【该DISPIMG函数只有wps才拥有】 …

lua对接GPT4实现对话

演示效果: 准备材料: 1、FastWeb网站开发服务:fwlua.com 2、一台服务器 该示例使用开源项目:fastweb 实现。 代码比较简单,主要是两部分,一个lua代码和一个html页面,用来用户发起请求和后台…

Gradle实现类似Maven的profiles功能

版本说明 GraalVM JDK 21.0.3Gradle 8.7Spring Boot 3.2.5 目录结构 指定环境打包 application.yml/yaml/properties 执行 bootJar 打包命令前要先执行 clean【其它和 processResources 相关的命令也要先执行 clean】,否则 active 值不会变! spring…

最实用的 LeetCode 刷题指南

暑期实习基本结束了,校招即将开启。当前就业环境已不再是那个双向奔赴时代了。求职者在变多,岗位在变少,要求还更高了,最近社群又开始活跃起来了,各种讨论、各种卷。 为方便大家快手入手、节省时间,我整理…

永磁同步直线电机(PMLSM)控制与仿真3-永磁同步直线电机数学三环控制整定

文章目录 1、电流环参数整定2、速度环参数整定3、位置环参数整定 写在前面:原本为一篇文章写完了永磁同步直线电机数学模型介绍,永磁同步直线电机数学模型搭建,以及永磁同步直线电机三环参数整定及三环仿真模型搭建,但因为篇幅较长…

ComfyUI中使用 SD3 模型(附模型下载详细说明)

文章目录 背景安装方式一方式二 测试 背景 StabilityAI近日开源了Stable Diffusion 3 Medium,简称 SD3,该模型拥有着20亿参数。其特点如下: 提升了整体图片的质量、真实感提供了三种文本编码器可组合使用,有助于在性能和效率之间…

iOS18新增通话录音和应用锁!附升级教程及内置壁纸

一觉睡醒,iOS18终于是揭开面纱了,而且已经有测试版给开发者使用了。 不过还是建议咱们普通用户不要轻易尝试,而且在升级之前一定要用iMazing做个备份,以免测试系统出现问题,丢失数据。 这次WWDC2024与之前爆料完全一样…

【计算机网络仿真实验-实验2.6】带交换机的RIP路由协议

实验2.6 带交换机的rip路由协议 1. 实验拓扑图 2. 实验前查看是否能ping通 不能 3. 三层交换机配置 switch# configure terminal switch(config)# hostname s5750 !将交换机更名为S5750 S5750# configure terminal S5750(config)#vlan 10 S5750(config-vlan)#exit S57…

面向事件编程之观察者模式

前言 村里的老人常说:真男人就该懂得遵守“三不原则”——不主动、不拒绝、不负责。 一个复杂的软件系统,其中必然会存在各种各样的“对象”,如果在设计之初没有注意控制好耦合度,导致各个对象甚至是函数之间高度耦合&#xff0…

工业自动化领域常见的通讯协议

工业自动化领域常见的通讯协议,包括PROFINET、PROFIBUS、Modbus、Ethernet/IP、CANopen、DeviceNet和BACnet。通过分析这些协议的技术特点、应用场景及优势,比较它们在工业自动化中的性能和适用性,帮助选择最合适的协议以优化系统性能和可靠性…

记录AE快捷键(持续补充中。。。)

记录AE快捷键 快捷键常用快捷键图层快捷键工具栏图层与属性常用指令视图菜单时间轴常规快捷键项目首选项功能摄像机操作 常用操作导入AI/PS工程文件加选一个关键参数快速回到上下一帧隐藏/显示图层关键帧拉长缩短关键帧按着鼠标左键不松手,在秒表那一列往下移动会都…

为什么电源滤波器中的电容器太大

所有 AC-DC 转换器,无论是线性电源还是具有某种开关元件,都需要一种机制来获取交流侧的变化功率并在直流侧产生恒定功率。通常,大滤波电容器用于在交流功率高于直流负载所需时吸收和存储能量,并在交流功率低于所需时向负载提供能量…

常用的JDK调优监控工具整理

JVM 调优首先要做的就是监控 JVM 的运行状态,这就需要用到各种官方和第三方的工具包了 一、 JDK 工具包 JDK 自带的 JVM 工具可以分为命令行工具和可视化工具 命令行工具 jps: JVM Process status tool:JVM进程状态工具,查看进程基本信息j…

DomoAI让你轻松变身视频达人!支持20s完整视频生成!

账号注册 官网:https://www.domoai.app/zh-Hant/library 功能 支持不同风格的视频类型,支持图片转视频,支持文字转图片,支持静态图片变为动态。 可以切换语言为中文 风格转换 选择不同风格的 支持生成20s,目前接触…

0. 云原生之基于乌班图远程开发

云原生专栏大纲 文章目录 安装乌班图配置静态IP重置root密码开启root远程登录开启远程SSH访问安装docker安装docker-compose安装Edge浏览器安装搜狗输入法安装TeamViewer安装虚拟显示器安装JDK安装maven安装vscodevscode插件安装VSCode配置maven、git、jdk、自动报错vscode快捷…