Transformer系列:图文详解Decoder解码器原理

从本节开始本系列将对Transformer的Decoder解码器进行深入分析。


内容摘要
  • Encoder-Decoder框架简介
  • shifted right移位训练
  • 解码器的并行训练和串行预测
  • 解码器自注意力层和掩码
  • 解码器交互注意力层和掩码
  • 解码器输出和损失函数

Encoder-Decoder框架简介

在原论文中Transformer用于解决机器翻译任务,机器翻译这种Seq2Seq问题通常以Encoder-Decoder框架来进行建模,Transformer的网络结构也是基于encoder-decoder框架设计的。这种框架的模型分为两部分编码器Encoder和解码器Decoder,编码器负责将原文本数据编码为中间状态向量,该状态向量传递给解码器生成输出。示意图如下

Encoder-Decoder框架

以机器翻译场景为例,期望将某种语言的句子X翻译成另一种语言的句子Y,句子被表征为每个位置的字符id输入,则给定X=(x1,x2,x3,x4…)输入给模型,期望模型预测出Y=(y1,y2,y3,y4…),模型架构如下

机器翻译场景的Encoder-Decoder

编码器会对完整的输入句子通过各种复杂非线性变换生成State,代表原始输入被编码器编码之后形成的中间语义状态,形如公式

编码器输出中间语义向量

而解码器层需要融合解码器产出的中间状态State,和解码器已经生成出的信息Y1,Y2…Yi-1,来生成i时刻需要生成的单词Yi。

解码器融合解码器语义和历史解码信息

解码器是从第一个单词开始,逐位预测下一个单词,最终实现了从X翻译到Y的任务。
在实际网络中会在解码器中增加注意力机制,否则对于任何位置Yi的预测中间状态state都是一样的,显然源文本中每个位置的字符应该和目标翻译文本各位置字符存在一定的对照关系,因此源文本的编码器state向量应该在每个位置对于当下要预测的Yi有不一样的权重分配,公式如下

带有注意力机制的Decoder

注意力机制工作的方式是将当下需要预测的单词位置的隐向量,和编码器输出的每个输入位置的状态向量,一一通过一个对齐函数(Attention)来计算目标单词和输入中某单词对齐的可能性大小,可能性越大赋予更大的权重,代表当下预测单词应该更加关注源文本中其对照单词的信息,最终中间状态向量state会给该对照单词位置处的分量给予更多的权重,从而更好地预测出该位置的目标单词。带有注意力机制的Encoder-Decoder示意图如下

带有注意力机制的Encoder-Decoder


shifted right移位训练

Transformer的解码器和一般的Encoder-Decoder结构类似,融合编码器的输出以及解码器当前位置之前已经预测出的输出,一齐预测出当前位置的预测结果,通过逐位依次预测完成Seq2Seq的任务。Transformer解码器结构如下

Transformer的解码器

右侧部分为Decoder解码器,将期望预测的目标文本添加start和end标识位置,底部将目标文本作为输入,顶部将目标文本**右移一格(shifted right)**作为预测输出,编码器的输出和输出是错位设计的,以编码器输入为“I love you”,解码器输出为“我爱你”为例,在训练过程中编码器的输入和预测目标分别为

错位训练

每次总是以前面已经出现的单词加上编码器的中间状态,来预测下一个单词,比如红色阴影部分使用"+我"来预测下一个单词“爱”,以此类推该条样本可以分为预测“我”,“爱”,“你”,“end”四个任务,Decoder的目标是输出“我”,“爱”,“你”,“end”四个位置的embedding,这四个任务的预测准确度作为整条样本的预测目标。
从输入输出的角度来看,""位置经过Decoder输出的向量embedding服务于“我”,"我"位置经过Decoder输出的向量embedding服务于“爱”,以此类推,当前词的Decoder结果用于预测它右边那个词的概率,这就是shifted right的体现,理解这点很重要。

理解shifted right错位训练


解码器的并行训练和串行预测

shifted right移位训练仅仅解决了预测目标的问题,移位训练实施起来比一般的分类任务要复杂,分为训练和预测两种场景。
在训练场景下答案数据集会提前给到,令一个批次数量为B,文本长度为L,输出embedding长度为D,我们只需要将前L-1的文本作为Decoder的输入,将后L-1的文本作为Decoder的预测目标即可,永远用前一个词的embedding来预测后一个词的概率分布,此时输入是[B,L-1,D],输出也是[B,L-1,D],再加上Transformer这种Self Attention天然地支持所有词并行输入训练,因此在训练场景可以将答案文本全局移位,然后全部一齐输入训练,考验模型在前词和更早之前的词确定的前提下,后面一个词的预测能力,将一个完成的句子拆成一个个单词的预测任务从而重复地训练模型能力。
在预测场景下不存在答案文本,只能从位置开始逐位预测,因此预测场景的解码器必定是串行的。将预测的单词和历史预测单词一齐作为解码器输入来预测下一个新单词,重复这个过程直到预测结果为截止,预测阶段输入文本是一个一个单独输入的,同时会配合在此之前的历史预测单词完成自注意力机制。

预测阶段解码器串行工作方式


解码器自注意力层和掩码

解码器主要包含两个注意力模块,分别是自注意力层和交互注意力层,自注意力层是对历史已经预测的单词序列做特征表征,交互注意力层是融合历史预测单词序列和编码器输出的特征表征。在自注意力层有两个要点,首先Q,K,V在训练和预测阶段怎么分配,另外是它独有的下三角掩码。

Q,K,V在训练和预测阶段的分配

解码器的自注意力机制和编码器中的网络结构一致,都是基于Self Attention,通过原始embedding加上位置编码来作为Decoder的输入,自注意力层包含Q,K,V注意力计算,残差链接,层归一化,前馈传播模块,mask机制等。
解码器的自注意力机制在训练阶段Q,K,V相同,都是带有mask掩码的答案文本embedding,而在预测阶段由于只需要用Decoder的最后一维(也就是最后一个token)embedding做概率分布,因此只需要将当前词的信息作为Q,将当前词和之前所有的词的信息作为K和V,对最后一个token位置单独做Self Attention即可,如果这点难以理解请回看上一段的shifted right训练方式。

下三角掩码

在编码器中仅需要对padding位置进行掩码,因为padding位置的信息不需要带有权重去干扰有实词位置的embedding表征,而在解码器模块不仅要考虑padding导致的mask,还要考虑后词偷看问题。由于答案是一齐输入的,而实际的部署场景是步进预测的,理论上当前步长是看不到当前步长之后的词的信息的,解决方案是使用下三角掩码,将答案中当前位置之后的单词全部mask为0,这样答案文本依旧可以一齐输入,在Keras的Transformer源码中实现如下

def GetSubMask(s):
    # TODO 生成一批下三角矩阵,就是斜对角线以下部分全是1
    len_s = tf.shape(s)[1]
    bs = tf.shape(s)[:1]
    mask = K.cumsum(tf.eye(len_s, batch_shape=bs), 1)
    return mask

令s为一个[batch_size,5,6]每个文本最大长度为5,每个单词映射维度为6,调用GetSubMask生成mask如下

>>> a = tf.reshape(tf.convert_to_tensor(list(range(30))), [1, 5, 6])
>>> GetSubMask(a)
>>> <tf.Tensor: shape=(1, 5, 5), dtype=float32, numpy=
array([[[1., 0., 0., 0., 0.],
        [1., 1., 0., 0., 0.],
        [1., 1., 1., 0., 0.],
        [1., 1., 1., 1., 0.],
        [1., 1., 1., 1., 1.]]], dtype=float32)>

该下三角掩码美一行代表当前位置,每一行的纵向只有当前位置和之前位置为1代表自注意力使用该词,否则为0代表该词还看不到不能使用,以句子序列ABCD为例图示如下

下三角掩码

例如在计算C单词的自注意力表征的时候,只能使用候选的ABC三个词的V信息,C和D的注意力权重必须干预改成0。

掩码中1代表计算出的Q,K相似度保留原值,而0位置代表Q,K相似度改为一个极负的值,使得注意力权重为0,如图所示

下三角掩码对自注意力的影响

考虑到在训练过程中答案本身会进行该批次下的统一padding,因此还需要再叠加padding的mask掩码,杜绝padding单词对实词的表征影响,这个和编码器中的掩码一致,在源码中实现如下

# TODO 输出该批次下每个文本样本,在每个词步长下的mask向量,由于pad和词步长无关,所以每个步长下的mask向量相同,就是pad位置的是0
self_pad_mask = Lambda(lambda x: GetPadMask(x, x))(tgt_seq)
# TODO 只允许该词和该词前面的词纳入计算,下三角 [batch_size, seq_len-1, seq_len-1]
# TODO 输出该批次下每个文本样本,在每个词步长下的mask向量,由于是生成模型,只能基于当下词和前词进行计算,所以是个下三角
self_sub_mask = Lambda(GetSubMask)(tgt_seq)
# TODO 只要两个有一个为0则为0 mask掉
self_mask = Lambda(lambda x: K.minimum(x[0], x[1]))([self_pad_mask, self_sub_mask])

其中self_pad_mask为答案句子的padding掩码,对于答案中每个单词,该掩码是相同的,例如ABCD四个单词组成的答案,其中D词为padding,有词位置仅有ABC,则self_pad_mask如下

编码器层的padding掩码

源码使用K.minimum将两个掩码合并,每个位置取最小值,相当于两个掩码只要有任意一种情况需要被遮蔽则就应该被遮蔽,如图所示

解码器的自注意力最终掩码

通过掩码机制,一齐并行输入文本得到的每个单词的自注意力表征和一个一个逐位循环预测进行的表征效果等同。


解码器交互注意力层和掩码

自注意力层是解码器输入自身的特征表征,而交互注意力层用到了编码器的输出,将Decoder和Encoder信息进行融合。交互注意力层和编码器中的注意力层网络结构基本没有差异,但是由于有两方进行交互因此Q,K,V的分配上需要单独设计,解码器交互注意力层的特写如下

交互注意力层

前文提到在Encoder-Decoder框架中会使用对齐函数来计算目标单词和编码器输出的每个单词对齐的可能性大小,而在Transformer中使用点乘注意力来作为对齐函数,解码器和编码器作为该对齐函数的输入,来比对当前解码器位置应该更多地关注哪个源文本位置,进一步将源文本信息携带到当前编码位置,因此解码器交互注意力层Q,K,V安排如下

  • Q:解码器自注意力层的输出
  • K:编码器的输出
  • V:编码器的输出

在训练之前需要对所有源文本和目标文本进行单独padding处理,源文本的seq_length通常不等于目标文本的seq_length,因此交互注意层计算的注意矩阵不是一个方阵,计算示意图如下

交互注意力计算

以解码层的单词A为例,A需要融合编码器中的a,b,c,d四个单词的信息表征,其中得分权重分别为(3.2,1.3,0.9,-1),同样的交互注意力也需要mask掩码,掩码的维度和注意力权重矩阵维度相同,在源码中实现如下

def GetPadMask(q, k):
    '''
    shape: [B, Q, K]
    '''
    # TODO [batch_size, seq_len - 1] => [batch_size, seq_len - 1, 1]
    ones = K.expand_dims(K.ones_like(q, 'float32'), -1)
    # TODO [batch_size, 1, seq_len - 1]
    mask = K.cast(K.expand_dims(K.not_equal(k, 0), 1), 'float32')
    # TODO [batch_size, seq_len-1, seq_len-1],相当于对mask直接复制
    # TODO 输出该批次下每个文本样本,在每个词步长下的mask向量,由于pad和词步长无关,所以每个步长下的mask向量相同,就是pad位置的是0
    mask = K.batch_dot(ones, mask, axes=[2, 1])
    return mask

# TODO 参数1决定步长,参数二决定pad
enc_mask = Lambda(lambda x: GetPadMask(x[0], x[1]))([tgt_seq, src_seq])

此处的掩码根据padding机制生成,其中GetPadMask的第一个参数tgt_seq决定文本步长,第二个参数决定padding的依据,显然使用了源文本的padding信息,例如在源文本abcd中d为padding位置,则mask矩阵如下

交互注意力掩码

代表解码器层中A,B,C都需要携带编码器中的a,b,c,d信息,但是A,B,C每个位置计算的时候都需要舍弃源文本中的d信息,因为d信息是padding的干扰项。
交互注意力层计算解码器输入每个单词位置相对于编码器源文本的表征,解码器每个输入本身通过下三角mask机制代表当前和之前位置信息,而编码器源文本是完整可见的,因此解码器每个位置都可以和全部编码器输出计算注意力,只需要主要编码器的padding部分在交互注意力的时候同样需要删除,源文本中的padding信息不能带入到解码器中,示意图如下

解码器中mask工作流程


解码器输出和损失函数

解码器经过自注意力层提取当前预测位置的表征,经过交互注意力层以当前预测位置的表征和编码器层的中间状态进行对齐,融合编码器中的信息表征到解码器中来,令该批次样本数为B,解码器最大文本长度为L,embedding维度为D,则解码器最终输出一个三维向量,维度为[B,L-1,D],其中L-1是在训练过程中使用错位训练策略导致。
Transformer在解码器的输出层加入线性层Linear使每个位置的embedding表征映射到预测词库中每个词的概率,以英文到德文翻译的数据集为例,输出为3665个样本中德文单词的得分,源码实现如下

target_layer = TimeDistributed(Dense(o_tokens.num(), use_bias=False))

# TODO decode out [batch_size, seq_len-1, 256]
dec_output = self.decoder(tgt_emb, tgt_seq, src_seq, enc_output, active_layers=active_layers)
# TODO final_output [batch_size, seq_len-1, 3665]
final_output = target_layer(dec_output)

因为错位训练的存在,L-1代表从源文本中出去之外,第2个单词到最后位置的信息表征,因此只需要将Linear的结果和实际的错位单词id进行比对即可计算该条样本的损失,源码中采用softmax交叉熵来计算每个L-1位置的loss,如果该位置实际为padding则忽略loss,最终采用所有实词位置的loss均值作为该样本的总损失,采用该批次的平均损失作为该批次的总损失。

        def get_loss(y_pred, y_true):
            y_true = tf.cast(y_true, 'int32')
            # loss=[None, len_seq],输出每个样本,在每个词位置的softmax loss
            loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred)
            # TODO 对于padding位置的预测,该预测预测,但是不记入loss
            mask = tf.cast(tf.not_equal(y_true, 0), 'float32')
            # 对非mask位置求均值
            loss = tf.reduce_sum(loss * mask, -1) / tf.reduce_sum(mask, -1)
            loss = K.mean(loss)
            return loss


全文完毕,本节基于训练过程探究Decoder的原理,下一节会基于预测部分来完整理解Decoder的工作方式。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/710589.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode-2779. 数组的最大美丽值【数组 二分查找 排序 滑动窗口】

LeetCode-2779. 数组的最大美丽值【数组 二分查找 排序 滑动窗口】 题目描述&#xff1a;解题思路一&#xff1a;滑动窗口与排序解题思路二&#xff1a;0解题思路三&#xff1a;0 题目描述&#xff1a; 给你一个下标从 0 开始的整数数组 nums 和一个 非负 整数 k 。 在一步操…

【嵌入式】一种优雅的 bootloader 跳转APP 的方式

【嵌入式】一种优雅的 bootloader 跳转APP 的方式 0. 个人简介 && 授权须知1. 前言2. 干净的跳转3.程序的 noinit 段4. 利用noinit段实现优雅的跳转4.1 检查栈顶地址是否合法4.2 栈顶地址 44.3 __set_MSP 5.OTA 过后的运行逻辑 0. 个人简介 && 授权须知 &#…

MongoDB 多层级查询

多层级查询 注意&#xff1a;要注意代码顺序 查询层级数据代码放前面&#xff0c;查询条件放后面 if (StringUtils.isBlank(params.getDocType())) {params.setDocType(DOC_TDCTYPE);}String docName mapper.findByDocInfo(params.getDocType());List<ExpertApprovalOpin…

怎么把Rmvb改成mp4格式?把rmvb改成MP4格式的四种方法

怎么把Rmvb改成mp4格式&#xff1f;在当今的数字时代&#xff0c;视频文件格式的多样性给我们带来了巨大的便利&#xff0c;但也可能带来一些兼容性的问题。rmvb是一种曾经非常流行的视频文件格式&#xff0c;主要由于其较高的压缩效率和相对不错的画质。然而&#xff0c;随着技…

计算机组成原理学习 Part 1

计算机系统 组成 计算机系统 { 硬件 计算机的实体&#xff0c;如主机、外设等 软件 由具有各类特殊功能的信息&#xff08;程序&#xff09;组成 计算机系统 \begin{cases} 硬件 &\text 计算机的实体&#xff0c;如主机、外设等\\ 软件 &\text 由具有各类特殊功能的信…

把Vue项目从Window系统迁移到Mac系统的方案

不能启动vue ui 直接运行&#xff0c;会报错如下&#xff1a; failed to load config from /Users/xiaochen/IdeaProjects/ChatViewer-frontend/vite.config.tserror when starting dev server: Error: You installed esbuild for another platform than the one youre curre…

宝藏速成秘籍(6)归并排序法

一、前言 1.1、概念 归并排序&#xff08;Merge Sort&#xff09;是一种基于分治思想的排序算法。它将数组分成两个子数组&#xff0c;分别对这两个子数组进行排序&#xff0c;然后再将它们合并成一个有序的数组。归并排序是一种经典的分治算法&#xff0c;它的核心思想是将待…

探索交互设计:五大关键维度全面剖析

交互式设计是用户体验&#xff08;UX&#xff09;设计的重要组成部分。在本文中&#xff0c;我将向大家解释什么是交互设计并简要描述交互设计师通常每天都做什么。 一、什么是交互设计 交互式设计用简单的术语来理解就是用户和产品之间的交互。在大多数情况下&#xff0c;当…

详解MySQL中的PERCENT_RANK函数

目录 1. 引入1. 基本使用2&#xff1a;分组使用3&#xff1a;处理重复值4. 使用优势4.1 手动计算百分等级4.2 使用 PERCENT_RANK 的优势4.3 使用 PERCENT_RANK 5. 总结 在 MySQL 中&#xff0c;PERCENT_RANK 函数用于计算一个值在其分组中的百分等级。 它的返回值范围是从 0 …

【LLM】吴恩达『微调大模型』课程完全笔记

Finetuning Large Language Models 版权说明&#xff1a; 『Finetuning Large Language Models』是DeepLearning.AI出品的免费课程&#xff0c;版权属于DeepLearning.AI(https://www.deeplearning.ai/)。 本文是对该课程内容的翻译整理&#xff0c;只作为教育用途&#xff0c;不…

会声会影封面图怎么设置 会声会影渲染封面如何固定 会声会影视频剪辑软件制作教程

使用会声会影剪辑完成过后&#xff0c;通常我们需要给我们的视频设置封面&#xff0c;渲染封面又需要进行固定。本文将围绕会声会影封面图怎么设置和会声会影渲染封面如何固定来进行介绍。 一、会声会影封面图怎么设置 会声会影不能随意自定义设置封面&#xff0c;默认情况下…

中国姓名学十大权威专家颜廷利:全国排名第一的起名大师

颜廷利教授,是济南市历城区唐王镇的名人,位居2023年中国当代十大国学大师排行榜之首。全国排名第一的起名大师颜廷利教授以其深厚的学术造诣和卓越的贡献赢得了名誉和尊重,成为当代国学界的翘楚。他从事国学研究已有数十年,对经史子集的研究融会贯通,展现出了非凡的学术造诣。中…

Navicate操作某一张表后,卡主,无法加载,也无法编辑,更无法读取

说明 Navicate操作某一张表后&#xff0c;卡主&#xff0c;无法加载&#xff0c;也无法编辑&#xff0c;更无法读取&#xff0c;遇到这种情况&#xff0c;一般是因为表被锁住了 解决方案 右击数据库&#xff0c;打开命令号界面 查看进程列表 SHOW PROCESSLIST;mysql> …

FreeRTOS:4.内存管理

FreeRTOS内存管理 目录 FreeRTOS内存管理1. 为什么不直接使用C库函数的malloc和free函数2. FreeRTOS的五种内存管理方式3. heap4源码分析3.1 堆内存池3.2 内存块的链表数据结构3.3 堆的初始化3.4 堆的内存分配3.5 堆的内存释放 4. 总结 1. 为什么不直接使用C库函数的malloc和fr…

LIMS(实验室)信息管理系统源码、有哪些应用领域?采用C# ASP.NET dotnet 3.5 开发的一套实验室信息系统源码

LIMS&#xff08;实验室&#xff09;信息管理系统源码、有哪些应用领域&#xff1f;采用C# ASP.NET dotnet 3.5 开发的一套实验室信息系统源码 LIMS实验室信息管理系统&#xff0c;是一种基于计算机硬件和数据库技术&#xff0c;集多个功能模块为一体的信息管理系统。该系统主…

利用钉钉机器人和PHP开发一款免费的网站可用性检测工具,单节点版

前言 手里有几套系统正在运维&#xff0c;需要保障正常运行&#xff0c;所以可用性检测就必不可少啦&#xff0c; 以前本来是用的阿里官方的云监控&#xff0c;但现在价格感觉太贵了&#xff0c;不划算 那就自己手搓一个简易版的监控吧。 成品效果展示 代码展示 <?php …

2024年哪4种编程语言最值得学习?看JetBrains报告

六个月前,编程工具界的大牛JetBrains发布了他们的全球开发者年度报告。 小吾从这份报告中挑出了关于全球程序员过去一年使用编程语言的情况和未来的采纳趋势,总结出2024年最值得学习的四种编程语言。一起来看看吧。 JetBrains在2023年中开始,就向全球的编程达人们发出了问卷…

海豚调度异常处理: 使用 arthas 在内存中删除启动失败的工作流

&#x1f4a1; 本系列文章是 DolphinScheduler 由浅入深的教程&#xff0c;涵盖搭建、二开迭代、核心原理解读、运维和管理等一系列内容。适用于想对 DolphinScheduler了解或想要加深理解的读者。祝开卷有益。大数据学习指南 大家好&#xff0c;我是小陶&#xff0c;DolphinSch…

笔记本硬盘对拷:升级硬盘的好方法!

如今电子产品更新换代的速度不断加快&#xff0c;笔记本电脑的配置也日新月异。几年前购买的笔记本硬盘容量350G曾经令你感到相当满意。但时至今日&#xff0c;这样的容量是否已经显得有些落后&#xff1f;如果你想要升级硬盘&#xff0c;笔记本硬盘对拷是一个很好的选择。 需要…

工业园区的弱电智能化总体建设规划

在当今迅速发展的工业环境中&#xff0c;一个高效、智能的工业园区是企业成功的重要基石。随着技术的进步&#xff0c;弱电系统的智能化已不仅仅是便利的象征&#xff0c;更是安全生产和效率提升的必要条件。今天&#xff0c;我们将探讨如何通过弱电智能化系统的总体建设规划来…