Tensorflow入门实战 T04-猴痘识别

本篇文章主要:tensorflow

运行环境:本地cpu

运行epoch:50

1、tensorflow官网

tensorflow的官网教程。初学者的 TensorFlow 2.0 教程  |  TensorFlow Core

官网上有图像分类的相关详细描述还有代码示例。

2、完整代码展示

from tensorflow import keras
from keras import layers, models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]  # 如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  # 设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0], "GPU")

# 导入数据
data_dir = "/Users/MsLiang/Documents/mySelf_project/pythonProject_pytorch/learn_demo/P_model/p04_houdou/data"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:", image_count)  # 2142

Monkeypox = list(data_dir.glob('Monkeypox/*.jpg'))
im = PIL.Image.open(str(Monkeypox[0]))
# im.show()

# 数据处理
batch_size = 32
img_height = 224
img_width = 224

"""
   【训练数据】,关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

"""
    【测试数据】关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)

# 可视化数据
plt.figure(figsize=(20, 10))
for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")
plt.show()  # 图片展示

# 再次检查数据 格式
'''
    Image_batch是形状的张量(32,224,224,3) 这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)
'''
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)   # (32, 224, 224, 3)
    print(labels_batch.shape)  # (32,)
    break

# 配置数据集
AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

# 构建神经网络
num_classes = 2

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995

layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
在上一篇文章花朵识别中,训练准确率与验证准确率相差巨大就是由于模型过拟合导致的

关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""

model = models.Sequential([
    keras.layers.experimental.preprocessing.Rescaling(1. / 255, input_shape=(img_height, img_width, 3)),

    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)),  # 卷积层1,卷积核3*3
    layers.AveragePooling2D((2, 2)),  # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),  # 池化层2,2*2采样
    layers.Dropout(0.3),
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.3),

    layers.Flatten(),  # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),  # 全连接层,特征进一步提取
    layers.Dense(num_classes)  # 输出层,输出预期结果
])

# model.summary()  # 打印网络结构

# 编译
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=1e-4)
model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

# 模型训练
from keras.callbacks import ModelCheckpoint
epochs = 50
checkpointer = ModelCheckpoint('best_model.h5',
                                monitor='val_accuracy',
                                verbose=1,
                                save_best_only=True,
                                save_weights_only=True)

history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer])


# 模型评估 (Loss与Accuracy图)
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()


# 预测

model.load_weights('best_model.h5')  # 加载效果最好的模型权重

from PIL import Image
import numpy as np

# img = Image.open("/Users/MsLiang/Documents/mySelf_project/pythonProject_pytorch/learn_demo/P_model/p04_houdou/data/Monkeypox/M01_01_01.jpg")  #这里选择你需要预测的图片
img = Image.open("/Users/MsLiang/Documents/mySelf_project/pythonProject_pytorch/learn_demo/P_model/p04_houdou/data/Others/NM01_01_00.jpg")  # 这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])

img_array = tf.expand_dims(image, 0)

predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:", class_names[np.argmax(predictions)])

3、运行结果

(1)图片展示

图片过于。。我缩放了。

(2)精确度和损失

(3)运行过程(截图)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/708430.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

探索Napier:Kotlin Multiplatform的日志记录库

探索Napier:Kotlin Multiplatform的日志记录库 在现代软件开发中,日志记录是不可或缺的部分,它帮助开发者追踪应用的行为和调试问题。对于Kotlin Multiplatform项目而言,能够在多个平台上统一日志记录的方法显得尤为重要。Napier…

远程开发端口转发

应用推荐场景: 1.服务器跑后台,本地出前端应用。 比如Stable Diffusion的大模型打标应用。 2.Docker容器服务器。 对于本地服务想要转出去,跑出来前端。该项能克服虚拟机的端口与ip访问问题。 正文: 涉及的软件: …

Petalinux由于网络原因产生的编译错误(3)-qemu-xilinx-system-native 失败

1 获取qemu-xilinx-system-native 失败 编译时遇到qemu-xilinx-system-native 包获取失败,如下图所示: 解决这种错误方法如下: 进入Petalinux 工程,编辑工程下的 project-spec/meta-user/conf/petalinuxbsp.conf 文件&#xff0…

苹果AI来了,ios18史诗级发布

今天凌晨1点,苹果举行了WWDC开发者大会,正式发布了 全新iOS 18、iPadOS 18、watchOS 11、tvOS 18、macOS 等以及Apple Intelligence的个人化智能系统 苏音给大家汇总下,ios18的更新内容以及苹果的AI。 本次更新,官方带来的title…

小白如何入门编程?零基础入门指南,助你一步步成为编程达人!

零基础编程入门先学什么?编程语言有几百种,我们应该怎么选择。想学习编程,加入互联网行业,哪一个更有前途?在小白学习编程会有各种各样的问题,今天小编我就来为你解答。 一、程序员的类别 程序员从事的人…

GenICam标准(一)

系列文章目录 GenICam标准(一) GenICam标准(二) 文章目录 系列文章目录1、概述GenApiGenTLSFNC(标准特征命名约定)CLProtocolGenCP 参考 emva 1、概述 如今的数码摄相机包含了很多的功能,而不仅…

数据预处理——调整方差、标准化、归一化(Matlab、python)

对数据的预处理: (a)、调整数据的方差; (b)、标准化:将数据标准化为具有零均值和单位方差;(均值方差归一化(Standardization)) (c)、最值归一化,也称为离差标准化,是对原始数据的…

MultiTrust:首个综合统一的多模态信任度基准(上)

随着我们迈向人工通用智能(AGI)的时代,出现了开创性的大语言模型(LLMs)。凭借它们强大的语言理解和推理能力,已经无缝地将其他模态(例如视觉)整合到LLMs中,以理解不同的输…

JavaScript 基础 - 第2天【函数】

文章目录 前言一、声明和调用1、声明(定义)2、调用 二、参数三、返回值四、作用域1、全局作用域2、局部作用域 五、匿名函数1、函数表达式2、立即执行函数 前言 理解封装的意义,能够通过函数的声明实现逻辑的封装,知道对象数据类…

遗传算法求解车间调度问题(附python代码)

背景介绍 车间调度问题(Job Shop Scheduling Problem, JSSP)是一类经典的组合优化问题,它在制造业和生产管理中有着广泛的应用。JSSP 的目标是对车间中的一系列作业进行排程,以使得作业在不同机器上的加工顺序是最优的&#xff0…

重生之 SpringBoot3 入门保姆级学习(21、场景整合 Redis 定制对象序列化存储)

重生之 SpringBoot3 入门保姆级学习(21、场景整合 Redis 定制对象序列化存储) 6.4 定制化 6.4 定制化 需求:保存一个 Person 对象到 redis 创建 Person 类 package com.zhong.redis.entity;import lombok.AllArgsConstructor; import lombok…

为什么Mamba模型被拒?

Mamba模型问世 最近,国际学习表征会议(ICLR)公布了2024年会议的最终决定,其中引起广泛关注的是一个名为Mamba的模型。这个模型最初被认为是对抗著名的Transformer架构进行语言建模任务的主要竞争者,但最终被拒绝&…

HTML制作一个超迷人的科技之眼

大家好,今天制作一个科技之眼! 先看具体效果: 要制作一个超迷人的“科技之眼”网页效果,你可以结合HTML、CSS和JavaScript来实现。下面是一个简单的步骤指南和示例代码,帮助你开始这个项目。 1. 设计概念 首先&…

Nginx 搭建 lnmp

一.编译安装Nginx 1.新建用户前期准备 官网下载nginx安装包 https://nginx.org/en/download.html yum -y install gcc pcre-devel openssl-devel zlib-devel openssl openssl-devel #安装依赖包 useradd -M -s /sbin/nologin nginx #新建nginx用户便于管理 2.切换到/opt…

大屏幕互动系统PHP源码 附动态背景图和配乐素材 含搭建教程

最新大屏幕互动系统PHP源码 附动态背景图和配乐素材 含搭建教程 测试环境:apachePHP7.3MySQL5.7 源码免费下载地址抄笔记 (chaobiji.cn)

家里满是“飞尘、毛絮”怎么办?用空气净化器,干净又卫生!

随着气温的升高,家中的毛絮和飞尘问题愈发严重,这些细小的颗粒常常聚集在房间的角落,即使每日清洁,似乎也难以彻底清除,反而可能使情况恶化。特别是对于养宠物的家庭来说,毛絮问题尤为突出,即使…

一键安全体检!亚信安全携手鼎捷软件推出企业安全体检活动 正式上线

亚信安全联合鼎捷软件股份有限公司(以下简称“鼎捷软件”)正式推出“一键安全体检”服务。亚信安全网络安全专家将携手鼎捷软件数据安全专家,围绕企业的数智安全状况,进行问题探索与治愈、新问题预测与预警,在全面筛查…

MPT(merkle Patricia trie )及理解solidity里的storage

what? MPT树是一种数据结构,用于在以太坊区块链中高效地存储和检索账户状态、交易历史和其他重要数据。MPT树的设计旨在结合Merkle树和Patricia树的优点,以提供高效的数据存储和验证 MPT树由四种类型的节点组成: **扩展节点&…

Redis的缓存击穿、缓存穿透和缓存雪崩是什么?怎么预防?

Redis的缓存击穿、缓存穿透和缓存雪崩是什么?怎么预防? 前言缓存击穿定义解决思路实现加锁设置过期时间Lua脚本刷新锁 缓存穿透定义实现 缓存雪崩定义解决思路 总结 前言 最近在CSDN上看到了一篇博客,Redis缓存击穿、雪崩、穿透!…

04 DNS域名解析服务

1、DNS系统的作用及类型 在整个互联网大家庭中,大部分的网站、邮件等服务器都使用了域名形式的地址,如www.baidu.com、mail.163.com等。很显然这种地址形式要比使用61.233.189.147、202.108.33.74的IP地址形式更加直观,且更容易被用户记住。…