移植fatfs制作内存文件系统

本文目录

  • 1、引言
  • 2、环境准备
    • 2.1 下载源码
    • 2.2 创建一个工程
  • 3、移植
    • 3.1 修改配置
    • 3.2 修改`diskio.c`
    • 3.3 编写RAM驱动
    • 3.4 编写验证代码
  • 4、验证


文章对应视频教程:

暂无,可以关注我的B站账号等待更新。


点击图片或链接访问我的B站主页~~~


1、引言

在嵌入式开发领域,FatFs以其实现的简洁性和对多种存储媒介的支持而著称。本文旨在通过一个具体实例——在RAM中构建FatFs文件系统,来阐述FatFs的移植过程。这一实践不仅有助于理解FatFs的工作机制,也为开发者提供了一个高效测试和验证FatFs配置的平台。


2、环境准备

环境搭建:确保你的开发环境支持ANSI C标准,通常使用GCC或其他兼容编译器。
我们本次演示采用之前博客中介绍过的Cmake+Kconfig的项目构建。

2.1 下载源码

fatfs的官网 官网链接。
进入官网,拖动网页到最下方:
在这里插入图片描述
点击图中的橙色框,进行下载,注意下载的为R0.15版本。

在这里插入图片描述
打开进行解压。

2.2 创建一个工程

从之前的cmake+kconfig的项目复制出一个工程。
在这里插入图片描述
修改工程名:
在这里插入图片描述
复制之前下载的fatfs源码中source文件夹下的7个文件的到source\fatfs文件夹下:
在这里插入图片描述
source\fatfs\Kconfig文件内容如下,因为引入了RAM文件系统的大小配置。
在这里插入图片描述

# source of Kconfig
menuconfig FATFS_ENABLE
bool "fatfs config"    
default n

if FATFS_ENABLE

menuconfig FATFS_RAM_ENABLE
bool "enable ram file system"
default n

if FATFS_RAM_ENABLE

config FATFS_RAM_POOL_SIZE
int "ram file system size"
default 102400

endif 



config FATFS_EMMC_ENABLE
bool "enable EMMC file system"
default n

endif
    

3、移植

移植fatfs主要是更改fatfs的配置和完善fatfs的读写驱动。

3.1 修改配置

打开ffconf.h文件,根据自己的应用需要进行修改。
我的配置文件如下:

/*---------------------------------------------------------------------------/
/  Configurations of FatFs Module
/---------------------------------------------------------------------------*/

#define FFCONF_DEF	80286	/* Revision ID */

/*---------------------------------------------------------------------------/
/ Function Configurations
/---------------------------------------------------------------------------*/

#define FF_FS_READONLY	0
/* This option switches read-only configuration. (0:Read/Write or 1:Read-only)
/  Read-only configuration removes writing API functions, f_write(), f_sync(),
/  f_unlink(), f_mkdir(), f_chmod(), f_rename(), f_truncate(), f_getfree()
/  and optional writing functions as well. */


#define FF_FS_MINIMIZE	0
/* This option defines minimization level to remove some basic API functions.
/
/   0: Basic functions are fully enabled.
/   1: f_stat(), f_getfree(), f_unlink(), f_mkdir(), f_truncate() and f_rename()
/      are removed.
/   2: f_opendir(), f_readdir() and f_closedir() are removed in addition to 1.
/   3: f_lseek() function is removed in addition to 2. */


#define FF_USE_FIND		1
/* This option switches filtered directory read functions, f_findfirst() and
/  f_findnext(). (0:Disable, 1:Enable 2:Enable with matching altname[] too) */


#define FF_USE_MKFS		1
/* This option switches f_mkfs() function. (0:Disable or 1:Enable) */


#define FF_USE_FASTSEEK	1
/* This option switches fast seek function. (0:Disable or 1:Enable) */


#define FF_USE_EXPAND	0
/* This option switches f_expand function. (0:Disable or 1:Enable) */


#define FF_USE_CHMOD	1
/* This option switches attribute manipulation functions, f_chmod() and f_utime().
/  (0:Disable or 1:Enable) Also FF_FS_READONLY needs to be 0 to enable this option. */


#define FF_USE_LABEL	1
/* This option switches volume label functions, f_getlabel() and f_setlabel().
/  (0:Disable or 1:Enable) */


#define FF_USE_FORWARD	1
/* This option switches f_forward() function. (0:Disable or 1:Enable) */


#define FF_USE_STRFUNC	1
#define FF_PRINT_LLI	1
#define FF_PRINT_FLOAT	1
#define FF_STRF_ENCODE	3
/* FF_USE_STRFUNC switches string functions, f_gets(), f_putc(), f_puts() and
/  f_printf().
/
/   0: Disable. FF_PRINT_LLI, FF_PRINT_FLOAT and FF_STRF_ENCODE have no effect.
/   1: Enable without LF-CRLF conversion.
/   2: Enable with LF-CRLF conversion.
/
/  FF_PRINT_LLI = 1 makes f_printf() support long long argument and FF_PRINT_FLOAT = 1/2
/  makes f_printf() support floating point argument. These features want C99 or later.
/  When FF_LFN_UNICODE >= 1 with LFN enabled, string functions convert the character
/  encoding in it. FF_STRF_ENCODE selects assumption of character encoding ON THE FILE
/  to be read/written via those functions.
/
/   0: ANSI/OEM in current CP
/   1: Unicode in UTF-16LE
/   2: Unicode in UTF-16BE
/   3: Unicode in UTF-8
*/


/*---------------------------------------------------------------------------/
/ Locale and Namespace Configurations
/---------------------------------------------------------------------------*/

#define FF_CODE_PAGE	936
/* This option specifies the OEM code page to be used on the target system.
/  Incorrect code page setting can cause a file open failure.
/
/   437 - U.S.
/   720 - Arabic
/   737 - Greek
/   771 - KBL
/   775 - Baltic
/   850 - Latin 1
/   852 - Latin 2
/   855 - Cyrillic
/   857 - Turkish
/   860 - Portuguese
/   861 - Icelandic
/   862 - Hebrew
/   863 - Canadian French
/   864 - Arabic
/   865 - Nordic
/   866 - Russian
/   869 - Greek 2
/   932 - Japanese (DBCS)
/   936 - Simplified Chinese (DBCS)
/   949 - Korean (DBCS)
/   950 - Traditional Chinese (DBCS)
/     0 - Include all code pages above and configured by f_setcp()
*/


#define FF_USE_LFN		2
#define FF_MAX_LFN		255
/* The FF_USE_LFN switches the support for LFN (long file name).
/
/   0: Disable LFN. FF_MAX_LFN has no effect.
/   1: Enable LFN with static  working buffer on the BSS. Always NOT thread-safe.
/   2: Enable LFN with dynamic working buffer on the STACK.
/   3: Enable LFN with dynamic working buffer on the HEAP.
/
/  To enable the LFN, ffunicode.c needs to be added to the project. The LFN function
/  requiers certain internal working buffer occupies (FF_MAX_LFN + 1) * 2 bytes and
/  additional (FF_MAX_LFN + 44) / 15 * 32 bytes when exFAT is enabled.
/  The FF_MAX_LFN defines size of the working buffer in UTF-16 code unit and it can
/  be in range of 12 to 255. It is recommended to be set it 255 to fully support LFN
/  specification.
/  When use stack for the working buffer, take care on stack overflow. When use heap
/  memory for the working buffer, memory management functions, ff_memalloc() and
/  ff_memfree() exemplified in ffsystem.c, need to be added to the project. */


#define FF_LFN_UNICODE	2
/* This option switches the character encoding on the API when LFN is enabled.
/
/   0: ANSI/OEM in current CP (TCHAR = char)
/   1: Unicode in UTF-16 (TCHAR = WCHAR)
/   2: Unicode in UTF-8 (TCHAR = char)
/   3: Unicode in UTF-32 (TCHAR = DWORD)
/
/  Also behavior of string I/O functions will be affected by this option.
/  When LFN is not enabled, this option has no effect. */


#define FF_LFN_BUF		255
#define FF_SFN_BUF		12
/* This set of options defines size of file name members in the FILINFO structure
/  which is used to read out directory items. These values should be suffcient for
/  the file names to read. The maximum possible length of the read file name depends
/  on character encoding. When LFN is not enabled, these options have no effect. */


#define FF_FS_RPATH		2
/* This option configures support for relative path.
/
/   0: Disable relative path and remove related functions.
/   1: Enable relative path. f_chdir() and f_chdrive() are available.
/   2: f_getcwd() function is available in addition to 1.
*/


/*---------------------------------------------------------------------------/
/ Drive/Volume Configurations
/---------------------------------------------------------------------------*/

#define FF_VOLUMES		2
/* Number of volumes (logical drives) to be used. (1-10) */


#define FF_STR_VOLUME_ID	1
#define FF_VOLUME_STRS		"RAM","EMMC"
/* FF_STR_VOLUME_ID switches support for volume ID in arbitrary strings.
/  When FF_STR_VOLUME_ID is set to 1 or 2, arbitrary strings can be used as drive
/  number in the path name. FF_VOLUME_STRS defines the volume ID strings for each
/  logical drives. Number of items must not be less than FF_VOLUMES. Valid
/  characters for the volume ID strings are A-Z, a-z and 0-9, however, they are
/  compared in case-insensitive. If FF_STR_VOLUME_ID >= 1 and FF_VOLUME_STRS is
/  not defined, a user defined volume string table is needed as:
/
/  const char* VolumeStr[FF_VOLUMES] = {"ram","flash","sd","usb",...
*/


#define FF_MULTI_PARTITION	0
/* This option switches support for multiple volumes on the physical drive.
/  By default (0), each logical drive number is bound to the same physical drive
/  number and only an FAT volume found on the physical drive will be mounted.
/  When this function is enabled (1), each logical drive number can be bound to
/  arbitrary physical drive and partition listed in the VolToPart[]. Also f_fdisk()
/  function will be available. */


#define FF_MIN_SS		512
#define FF_MAX_SS		512
/* This set of options configures the range of sector size to be supported. (512,
/  1024, 2048 or 4096) Always set both 512 for most systems, generic memory card and
/  harddisk, but a larger value may be required for on-board flash memory and some
/  type of optical media. When FF_MAX_SS is larger than FF_MIN_SS, FatFs is configured
/  for variable sector size mode and disk_ioctl() function needs to implement
/  GET_SECTOR_SIZE command. */


#define FF_LBA64		1
/* This option switches support for 64-bit LBA. (0:Disable or 1:Enable)
/  To enable the 64-bit LBA, also exFAT needs to be enabled. (FF_FS_EXFAT == 1) */


#define FF_MIN_GPT		0x10000000
/* Minimum number of sectors to switch GPT as partitioning format in f_mkfs and
/  f_fdisk function. 0x100000000 max. This option has no effect when FF_LBA64 == 0. */


#define FF_USE_TRIM		0
/* This option switches support for ATA-TRIM. (0:Disable or 1:Enable)
/  To enable Trim function, also CTRL_TRIM command should be implemented to the
/  disk_ioctl() function. */



/*---------------------------------------------------------------------------/
/ System Configurations
/---------------------------------------------------------------------------*/

#define FF_FS_TINY		0
/* This option switches tiny buffer configuration. (0:Normal or 1:Tiny)
/  At the tiny configuration, size of file object (FIL) is shrinked FF_MAX_SS bytes.
/  Instead of private sector buffer eliminated from the file object, common sector
/  buffer in the filesystem object (FATFS) is used for the file data transfer. */


#define FF_FS_EXFAT		1
/* This option switches support for exFAT filesystem. (0:Disable or 1:Enable)
/  To enable exFAT, also LFN needs to be enabled. (FF_USE_LFN >= 1)
/  Note that enabling exFAT discards ANSI C (C89) compatibility. */


#define FF_FS_NORTC		1
#define FF_NORTC_MON	1
#define FF_NORTC_MDAY	1
#define FF_NORTC_YEAR	2022
/* The option FF_FS_NORTC switches timestamp feature. If the system does not have
/  an RTC or valid timestamp is not needed, set FF_FS_NORTC = 1 to disable the
/  timestamp feature. Every object modified by FatFs will have a fixed timestamp
/  defined by FF_NORTC_MON, FF_NORTC_MDAY and FF_NORTC_YEAR in local time.
/  To enable timestamp function (FF_FS_NORTC = 0), get_fattime() function need to be
/  added to the project to read current time form real-time clock. FF_NORTC_MON,
/  FF_NORTC_MDAY and FF_NORTC_YEAR have no effect.
/  These options have no effect in read-only configuration (FF_FS_READONLY = 1). */


#define FF_FS_NOFSINFO	0
/* If you need to know correct free space on the FAT32 volume, set bit 0 of this
/  option, and f_getfree() function at the first time after volume mount will force
/  a full FAT scan. Bit 1 controls the use of last allocated cluster number.
/
/  bit0=0: Use free cluster count in the FSINFO if available.
/  bit0=1: Do not trust free cluster count in the FSINFO.
/  bit1=0: Use last allocated cluster number in the FSINFO if available.
/  bit1=1: Do not trust last allocated cluster number in the FSINFO.
*/


#define FF_FS_LOCK		0
/* The option FF_FS_LOCK switches file lock function to control duplicated file open
/  and illegal operation to open objects. This option must be 0 when FF_FS_READONLY
/  is 1.
/
/  0:  Disable file lock function. To avoid volume corruption, application program
/      should avoid illegal open, remove and rename to the open objects.
/  >0: Enable file lock function. The value defines how many files/sub-directories
/      can be opened simultaneously under file lock control. Note that the file
/      lock control is independent of re-entrancy. */


#define FF_FS_REENTRANT	0
#define FF_FS_TIMEOUT	1000
/* The option FF_FS_REENTRANT switches the re-entrancy (thread safe) of the FatFs
/  module itself. Note that regardless of this option, file access to different
/  volume is always re-entrant and volume control functions, f_mount(), f_mkfs()
/  and f_fdisk() function, are always not re-entrant. Only file/directory access
/  to the same volume is under control of this featuer.
/
/   0: Disable re-entrancy. FF_FS_TIMEOUT have no effect.
/   1: Enable re-entrancy. Also user provided synchronization handlers,
/      ff_mutex_create(), ff_mutex_delete(), ff_mutex_take() and ff_mutex_give()
/      function, must be added to the project. Samples are available in ffsystem.c.
/
/  The FF_FS_TIMEOUT defines timeout period in unit of O/S time tick.
*/



/*--- End of configuration options ---*/

3.2 修改diskio.c

fatfs的驱动接口在diskio.c文件中,这个版本的fatfs提供了三种类型的驱动接口,
RAM、MMC、Flash,我只需要其中RAM、MMC。所以对diskio.c文件进行了微调,并将不同的设备驱动,放在别的文件了(利于软件分层)。大家如果嫌麻烦,也可以直接在diskio.c文件下添加内容。
diskio.c内容如下:

/*-----------------------------------------------------------------------*/
/* Low level disk I/O module SKELETON for FatFs     (C)ChaN, 2019        */
/*-----------------------------------------------------------------------*/
/* If a working storage control module is available, it should be        */
/* attached to the FatFs via a glue function rather than modifying it.   */
/* This is an example of glue functions to attach various exsisting      */
/* storage control modules to the FatFs module with a defined API.       */
/*-----------------------------------------------------------------------*/

#include "ff.h"			/* Obtains integer types */
#include "diskio.h"		/* Declarations of disk functions */
#include "ck_config.h"

#ifdef FATFS_RAM_ENABLE
#include "fs_ram.h"
#endif 

#ifdef FATFS_EMMC_ENABLE
#include "fs_emmc.h"
#endif 

/* Definitions of physical drive number for each drive */
#define DEV_RAM		0	
#define DEV_MMC		1	



/*-----------------------------------------------------------------------*/
/* Get Drive Status                                                      */
/*-----------------------------------------------------------------------*/

DSTATUS disk_status (
	BYTE pdrv		/* Physical drive nmuber to identify the drive */
)
{
	DSTATUS stat;
	int result;

	switch (pdrv) 
	{
	
	case DEV_RAM :

		#ifdef FATFS_RAM_ENABLE

		stat =  RAM_disk_status();

		#endif
		return stat;

		
	case DEV_MMC :

		#ifdef FATFS_EMMC_ENABLE

		stat =  EMMC_disk_status();

		#endif
		return stat;

	default:

		break;
	}
	return STA_NOINIT;
}



/*-----------------------------------------------------------------------*/
/* Inidialize a Drive                                                    */
/*-----------------------------------------------------------------------*/

DSTATUS disk_initialize (
	BYTE pdrv				/* Physical drive nmuber to identify the drive */
)
{
	DSTATUS stat;
	int result;

	switch (pdrv) {
	case DEV_RAM :
		#ifdef FATFS_RAM_ENABLE
		stat = RAM_disk_initialize();
		#endif
		return stat;

	case DEV_MMC :

		#ifdef FATFS_EMMC_ENABLE
		stat = EMMC_disk_initialize();
		#endif
		return stat;


	}
	return STA_NOINIT;
}



/*-----------------------------------------------------------------------*/
/* Read Sector(s)                                                        */
/*-----------------------------------------------------------------------*/

DRESULT disk_read (
	BYTE pdrv,		/* Physical drive nmuber to identify the drive */
	BYTE *buff,		/* Data buffer to store read data */
	LBA_t sector,	/* Start sector in LBA */
	UINT count		/* Number of sectors to read */
)
{
	DRESULT res;
	int result;

	switch (pdrv) {
	case DEV_RAM :

		#ifdef FATFS_RAM_ENABLE
		res = RAM_disk_read(buff, sector, count);
		#endif

		return res;

	case DEV_MMC :
		
		#ifdef FATFS_EMMC_ENABLE
		res = EMMC_disk_read(buff, sector, count);
		#endif

		return res;


	}

	return RES_PARERR;
}



/*-----------------------------------------------------------------------*/
/* Write Sector(s)                                                       */
/*-----------------------------------------------------------------------*/

#if FF_FS_READONLY == 0

DRESULT disk_write (
	BYTE pdrv,			/* Physical drive nmuber to identify the drive */
	const BYTE *buff,	/* Data to be written */
	LBA_t sector,		/* Start sector in LBA */
	UINT count			/* Number of sectors to write */
)
{
	DRESULT res;
	int result;

	switch (pdrv) {
	case DEV_RAM :

		#ifdef FATFS_RAM_ENABLE
		res = RAM_disk_write(buff, sector, count);
		#endif

		return res;

	case DEV_MMC :
	
		#ifdef FATFS_EMMC_ENABLE
		res = EMMC_disk_write(buff, sector, count);
		#endif

		return res;


	}

	return RES_PARERR;
}

#endif


/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions                                               */
/*-----------------------------------------------------------------------*/

DRESULT disk_ioctl (
	BYTE pdrv,		/* Physical drive nmuber (0..) */
	BYTE cmd,		/* Control code */
	void *buff		/* Buffer to send/receive control data */
)
{
	DRESULT res;
	int result;

	switch (pdrv) {
	case DEV_RAM :
		#ifdef FATFS_RAM_ENABLE
		res = RAM_disk_ioctl(cmd,buff);
		#endif
		// Process of the command for the RAM drive
		
		return res;

	case DEV_MMC :

		#ifdef FATFS_EMMC_ENABLE
		res = EMMC_disk_ioctl(cmd,buff);
		#endif
		// Process of the command for the MMC/SD card

		return res;

	}

	return RES_PARERR;
}


3.3 编写RAM驱动

source\fatfs\fs_ram路径下创建RAM的驱动。
只需要编写几个函数init、status、ioctl、read、write即可。
fs_ram.c内容如下:

#include "fs_ram.h"
#include "string.h"  // 用于 memcpy
#include "ck_config.h"

#define RAM_DISK_SIZE  (FATFS_RAM_POOL_SIZE)  
#define SECTOR_SIZE    512

static BYTE ram_disk[RAM_DISK_SIZE];
static DSTATUS ram_disk_status = STA_NOINIT;  // 初始状态为未初始化
DSTATUS RAM_disk_initialize(void) {
    // RAM 磁盘无需复杂初始化,直接标记为正常
    ram_disk_status = 0;
    return ram_disk_status;
}

DSTATUS RAM_disk_status(void) {
    return ram_disk_status;
}

DRESULT RAM_disk_read(BYTE* buff, DWORD sector, UINT count) {
    if (ram_disk_status & STA_NOINIT) {
        return RES_NOTRDY;  // 磁盘未准备好
    }
    if (sector + count > RAM_DISK_SIZE / SECTOR_SIZE) {
        return RES_PARERR;  // 超出范围
    }
    memcpy(buff, ram_disk + sector * SECTOR_SIZE, count * SECTOR_SIZE);
    return RES_OK;
}

DRESULT RAM_disk_write(const BYTE* buff, DWORD sector, UINT count) {
    if (ram_disk_status & STA_NOINIT) {
        return RES_NOTRDY;  // 磁盘未准备好
    }
    if (sector + count > RAM_DISK_SIZE / SECTOR_SIZE) {
        return RES_PARERR;  // 超出范围
    }
    memcpy(ram_disk + sector * SECTOR_SIZE, buff, count * SECTOR_SIZE);
    return RES_OK;
}

DRESULT RAM_disk_ioctl(BYTE cmd, void* buff) {
    if (ram_disk_status & STA_NOINIT) {
        return RES_NOTRDY;  // 磁盘未准备好
    }
    switch (cmd) {
        case CTRL_SYNC:
            // RAM 磁盘不需要同步操作
            return RES_OK;
        case GET_SECTOR_COUNT:
            *(DWORD*)buff = RAM_DISK_SIZE / SECTOR_SIZE;
            return RES_OK;
        case GET_SECTOR_SIZE:
            *(WORD*)buff = SECTOR_SIZE;
            return RES_OK;
        case GET_BLOCK_SIZE:
            // 返回擦除块大小
            *(DWORD*)buff = 1;  // 任意大小,RAM 不需要真正的擦除操作
            return RES_OK;
        default:
            return RES_PARERR;
    }
}

fs_ram.h内容如下:

#ifndef __FS_RAM_H__
#define __FS_RAM_H__

#include "ff.h"
#include "diskio.h"


extern DSTATUS RAM_disk_initialize(void);
extern DSTATUS RAM_disk_status(void);
extern DRESULT RAM_disk_read(BYTE* buff, DWORD sector, UINT count);
extern DRESULT RAM_disk_write(const BYTE* buff, DWORD sector, UINT count);
extern DRESULT RAM_disk_ioctl(BYTE cmd, void* buff);


#endif

3.4 编写验证代码

在工程路径下的main.c中编写测试代码。
这段测试代码主要是:
挂载文件系统:通过调用f_mount函数将文件系统挂载到指定的存储设备上。

格式化RAM磁盘:使用f_mkfs函数对指定的存储设备进行格式化,创建FAT文件系统。

创建并写入文件:使用f_open函数创建一个新文件或打开已存在的文件,然后使用f_write函数将数据写入文件。

读取文件内容:使用f_open函数打开文件,然后使用f_read函数从文件中读取数据。

卸载文件系统:通过调用f_mount函数将文件系统从存储设备上卸载。

内容如下:

#include "ff.h"
#include <stdio.h>
#include <string.h>

static char mkfs_buff[1024*24];
int main(void) {
    FATFS fs;
    FIL fil;
    FRESULT res;
    UINT bw;
    char buffer[64];

    // 挂载文件系统
    res = f_mount(&fs, "EMMC:", 0);
    if (res != FR_OK) {
        printf("f_mount error: %d\n", res);
        return 1;
    }

    // 格式化 RAM 磁盘
    MKFS_PARM fs_params = { FM_FAT, 0, 0, 0, 0 };
    res = f_mkfs("EMMC:", &fs_params, mkfs_buff, sizeof(mkfs_buff));
    if (res != FR_OK) {
        printf("f_mkfs error: %d\n", res);
        return 1;
    }
    TCHAR path[255];
 

    res = f_open(&fil, "hello.txt", FA_CREATE_ALWAYS | FA_WRITE | FA_READ);
    if (res != FR_OK) {
        printf("f_open error: %d\n", res);
        return 1;
    }
   printf("path:%d %s\r\n",f_getcwd(path, 255),path);
   
    // 写入文件
    char str[64] = "hello world!";
    res = f_write(&fil, str, sizeof(str), &bw);
    if (res != FR_OK ) {
        printf("f_write error: %d\n", res);
        f_close(&fil);
        return 1;
    }
    f_close(&fil);

    // 打开文件读取内容
    res = f_open(&fil, "hello.txt", FA_READ);
    if (res != FR_OK) {
        printf("f_open error: %d\n", res);
        return 1;
    }

    // 读取文件内容
    res = f_read(&fil, buffer, sizeof(buffer) - 1, &bw);
    if (res != FR_OK) {
        printf("f_read error: %d\n", res);
        f_close(&fil);
        return 1;
    }
    buffer[bw] = '\0';  // 添加字符串结束符
    printf("Read from file: %s\n", buffer);
    f_close(&fil);

    // 卸载文件系统
    f_mount(NULL, "", 0);

    return 0;
}


4、验证

在工程路径下输入python .\ck_script.py cn进行配置,开启fatfs使能。

在这里插入图片描述
在这里插入图片描述

在工程路径下输入python .\ck_script.py b,进行工程构建。
在这里插入图片描述
在工程路径下输入python .\ck_script.py m,进行项目编译。
在这里插入图片描述
执行程序,验证fatfs文件系统
在这里插入图片描述
移植成功!

本项目开源地址


时间流逝、年龄增长,是自己的磨炼、对知识技术的应用,还有那不变的一颗对嵌入式热爱的心!

到这里就结束了!希望大家给我的文章和B站视频
点赞o( ̄▽ ̄)d、关注(o)/~、评论(▽)!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/707985.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

GaN VCSEL:工艺革新引领精准波长控制新纪元

日本工程师们凭借精湛的技艺&#xff0c;开创了一种革命性的生产工艺&#xff0c;让VCSEL的制造达到了前所未有的高效与精准。这一成果由名城大学与国家先进工业科学技术研究所的精英们联手铸就&#xff0c;将氮化镓基VCSELs的商业化进程推向了新的高峰。它们将有望成为自适应前…

【Effective Web】常见的css居中方式

CSS居中方式 水平居中 text-align:center 适用范围&#xff1a;容器中都是行内元素 缺点&#xff1a;容器内所有元素都会居中&#xff0c;如果是文本描述需要左对齐&#xff0c;需要增加text-align:left覆盖 margin: 0 auto 适用范围&#xff1a;容器宽度固定。子元素宽度…

Linux-黑马程序员

目录 一、前言二、初识Linux1、操作系统&#xff08;1&#xff09;硬件和软件&#xff08;2&#xff09;操作系统 2、Linux3、虚拟机4、FinalShell5、WSL6、虚拟机快照 三、Linux基础命令1、Linux的目录结构2、Linux命令入门&#xff08;1&#xff09;Linux命令基础格式&#x…

优雅谈大模型11:Mistral

大模型技术论文不断&#xff0c;每个月总会新增上千篇。本专栏精选论文重点解读&#xff0c;主题还是围绕着行业实践和工程量产。若在某个环节出现卡点&#xff0c;可以回到大模型必备腔调或者LLM背后的基础模型新阅读。而最新科技&#xff08;Mamba,xLSTM,KAN&#xff09;则提…

tcp协议机制的总结(可靠性,提高性能),基于tcp的应用层协议,用udp如何实现可靠传输

目录 总结 引入 可靠性 ​编辑 分析 三次握手 提高性能 其他 常见的基于tcp应用层协议 用udp实现可靠传输 总结 引入 为什么tcp要比udp复杂的多? 因为它既要保证可靠性,又要兼顾性能 可靠性 分析 其中,序列号不止用来排序,还可以用在重传时去重 确认应答是机制中的…

618有什么值得推荐?2024数码产品推荐,轻松拿捏选购!

随着618购物节即将来临&#xff0c;你是否已被琳琅满目的商品所吸引&#xff0c;难以抉择&#xff1f;团团特意为你筛选出一系列经过亲身试验的优质好物&#xff0c;旨在帮助你在这场购物盛宴中迅速锁定心仪之选。这些推荐不仅走在时尚的前沿&#xff0c;更能满足你日常生活的各…

AUTOSAR学习

文章目录 前言1. 什么是autosar&#xff1f;1.1 AP&#xff08;自适应平台autosar&#xff09;1.2 CP&#xff08;经典平台autosar)1.3 我的疑问 2. 为什么会有autosar3.autosar的架构3.1 CP的架构3.1.1 应用软件层3.1.2 运行时环境3.1.3 基础软件层 3.2 AP的架构 4. 参考资料 …

软件测试分类介绍

大家好&#xff0c;软件测试是确保软件质量的关键环节之一&#xff0c;通过对软件系统的各个方面进行测试&#xff0c;可以发现和解决潜在的问题&#xff0c;提高软件的稳定性、可靠性和用户满意度。在软件测试领域&#xff0c;根据测试的目的、方法和对象的不同&#xff0c;可…

LLM大模型的挑战与未来,挑战大但是机遇更大!

大模型必然是未来很长一段时间我们工作生活的一部分&#xff0c;而对于这样一个与我们生活高度同频互动的“大家伙”&#xff0c;除了性能、效率、成本等问题外&#xff0c;大规模语言模型的安全问题几乎是大模型所面对的所有挑战之中的重中之重&#xff0c;机器幻觉是大模型目…

揭秘!wifi贴项目市场到底怎么样??

在共享经济市场中WiFi贴这个看似微小的项目&#xff0c;正逐渐散发出它独特的光芒。它的出现既充满了希望又伴随着疑惑&#xff1a;WiFi贴项目的真正面貌究竟如何&#xff1f;让我们一同揭开这神秘面纱。 首先&#xff0c;我们必须理解WiFi贴的本质&#xff1a;它由微火的罗经理…

【每日刷题】Day63

【每日刷题】Day63 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;每日刷题&#x1f34d; &#x1f33c;文章目录&#x1f33c; 1. 414. 第三大的数 - 力扣&#xff08;LeetCode&#xff09; 2. 2265. 统计值等于子树平均值的节点数…

农业领域科技查新点提炼方法附案例!

农业学科是人类通过改造和利用生物有机体(植物、动物、微生物等)及各种自然资源(光、热、水、土壤等)生产出人类需求的农产品的过程&#xff0c;人类在这一过程中所积累的科学原理、技术、工艺和技能&#xff0c;统称为农业科学技术&#xff0c;该领域具有研究范围广、综合性强…

音乐APP界面设计步骤详解

伴随着互联网的迅速发展&#xff0c;许多与因特网相关的职位应运而生&#xff0c;UI界面设计师是因特网的核心职位之一。UI界面设计已经渗透到我们生活的方方面面&#xff0c;包括网站、应用程序或其它数字平台上的按钮、菜单布局、配色方案和排版。很多人认为 UI界面设计只是关…

计算机图形学入门12:纹理映射

1.问题 如上图所示&#xff0c;前面的内容已经知道怎么对物体进行着色&#xff0c;在球和地板上出现了不同的颜色&#xff0c;也就是定义了不同的kd颜色系数&#xff0c;那么如何在物体不同位置定义不同属性呢&#xff1f; 2.纹理映射 2.1什么是纹理映射 如上图球的表面贴上一…

探索Jetpack Compose中的高效导航库:Voyager项目

探索Jetpack Compose中的高效导航库&#xff1a;Voyager项目 在Jetpack Compose中实现高效、可扩展的导航是每个开发者的追求。Voyager作为一个多平台导航库&#xff0c;不仅与Jetpack Compose无缝集成&#xff0c;还提供了一套务实的API&#xff0c;帮助开发者创建单活动应用…

tvm实战踩坑

今天玩了一下tvm的安装 我要安装v0.14.0的版本 所以按照官网的方法 https://tvm.apache.org/docs/install/from_source.html#python-package-installation git clone --recursive https://github.com/apache/tvm tvmgit checkout v0.14.0recursive是很重要的 这一步可以替换成…

显卡GPU、CUDA、Pytorch版本对应即下载安装

显存大于4G的建议使用GPU版本的pytorch&#xff0c;低于4G建议使用CPU版本pytorch&#xff0c;直接使用命令安装对应版本即可 GPU版本的pytorch的使用需要显卡支持&#xff0c;需要先安装CUDA&#xff0c;即需要完成以下安装 1.查看显卡GPU支持的CUDA版本&#xff08;最高&…

Flutter系列:关于ensureInitialized()

Flutter系列 关于ensureInitialized() - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite&#xff1a;http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/qq_28…

vue3 proxy对象转为原始对象

https://cn.vuejs.org/api/reactivity-advanced.html#toraw import { toRaw } from "vue";const foo {} const reactiveFoo reactive(foo)console.log(toRaw(reactiveFoo) foo) // true 人工智能学习网站 https://chat.xutongbao.top

18.9k star!一个高性能的嵌入式分析型数据库,主要用于数据分析和数据处理任务

大家好&#xff0c;今天给大家分享的是一个开源的面向列的关系数据库管理系统(RDBMS)。 DuckDB是一个嵌入式的分析型数据库&#xff0c;它提供了高性能的数据分析和数据处理能力。DuckDB的设计目标是为数据科学家、分析师和数据工程师提供一个快速、灵活且易于使用的数据分析工…