OpenCV学习(4.14) 基于分水岭算法的图像分割

1. 目标

  • 在这一章当中,
    • 我们将学习使用分水岭算法使用基于标记的图像分割
    • 我们将看到:cv.watershed()

2.理论

任何灰度图像都可以看作是地形表面,其中高强度表示峰和丘陵,而低强度表示山谷。您开始用不同颜色的水(标签)填充每个孤立的山谷(局部最小值)。随着水的上升,取决于附近的峰值(梯度),来自不同山谷的水,明显具有不同的颜色将开始融合。为避免这种情况,您需要在水合并的位置建立障碍。你继续填补水和建筑障碍的工作,直到所有的山峰都在水下。然后,您创建的障碍为您提供分割结果。这是分水岭背后的“哲学”。您可以访问分水岭上的CMM 网页,以便在某些动画的帮助下了解它。

但是这种方法会因图像中的噪声或任何其他不规则性而给出过度调整结果。因此,OpenCV 实施了一个基于标记的分水岭算法,您可以在其中指定要合并的所有谷点,哪些不合并。这是一种交互式图像分割。我们所做的是为我们知道的对象提供不同的标签。用一种颜色(或强度)标记我们确定为前景或对象的区域,用另一种颜色标记我们确定为背景或非对象的区域,最后标记我们不确定任何内容的区域,用 0 标记它。这是我们的标记。然后应用分水岭算法。然后我们的标记将使用我们给出的标签进行更新,对象的边界将具有-1 的值。

基于分水岭算法的图像分割是一种基于区域的图像分割方法,它将图像分割问题转化为求解连通区域的问题。分水岭算法的灵感来源于地理学中的分水岭概念,即流域的边界。在图像处理中,分水岭算法将图像看作地形图,图像中的亮度或灰度值表示地形的高度,目标是找到汇水盆地(即图像中的连通区域)的边界,这些边界被称为分水岭线。
分水岭算法的基本步骤如下:

  • 1. **灰度图像转换**:如果输入图像是彩色的,首先将其转换为灰度图像。
  • 2. **图像滤波**:为了减少噪声的影响,通常会对灰度图像进行滤波,如使用高斯滤波器。
  • 3. **梯度计算**:计算滤波后图像的梯度,以突出图像中的边缘。梯度图像中的每个像素值表示该点附近的强度变化。
  • 4. **标记**:在梯度图像中标记出局部最小值点,这些点被认为是汇水盆地的种子点。
  • 5. **淹没**:从每个种子点开始,模拟水位上升的过程,逐渐淹没整个图像。每当水位触及一个新的像素点时,检查该点的梯度值,如果该点属于多个种子点的流域,则将这些流域合并。
  • 6. **分水岭线标记**:当水位继续上升,最终所有的种子点都将汇合。在水位上升到最高点之前,标记出水位即将合并的区域,这些区域就是分水岭线。
  • 7. **输出结果**:分水岭线将图像分割成不同的区域,每个区域代表一个汇水盆地。

分水岭算法的一个主要问题是它对噪声和图像细节非常敏感,这可能导致过度分割。为了解决这个问题,通常会在分水岭算法之前或之后使用一些预处理或后处理技术,如形态学操作、区域合并等,以提高分割的准确性。
 

3. 代码

下面我们将看到一个如何使用距离变换和分水岭来分割相互接触的物体的示例。考虑下面的硬币图像,硬币互相接触。即使你达到阈值,它也会相互接触。

我们首先找到硬币的近似估计值。为此,我们可以使用 Otsu 的二值化。 

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('coins.png')
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret, thresh = cv.threshold(gray,0,255,cv.THRESH_BINARY_INV+cv.THRESH_OTSU)

 

现在我们需要去除图像中的任何小白噪声。为此,我们可以使用形态开放。要移除对象中的任何小孔,我们可以使用形态学闭合。所以,现在我们确切地知道靠近物体中心的区域是前景,而远离物体的区域是背景。只有我们不确定的区域是硬币的边界区域。

所以我们需要提取我们确定它们是硬币的区域。侵蚀消除了边界像素。所以无论如何,我们可以肯定它是硬币。如果物体没有相互接触,这将起作用。但由于它们相互接触,另一个好的选择是找到距离变换并应用适当的阈值。接下来我们需要找到我们确定它们不是硬币的区域。为此,我们扩大了结果。膨胀将物体边界增加到背景。这样,我们可以确保结果中背景中的任何区域确实是背景,因为边界区域被移除。见下图。

 

剩下的区域是我们不知道的区域,无论是硬币还是背景。分水岭算法应该找到它。这些区域通常围绕前景和背景相遇的硬币边界(甚至两个不同的硬币相遇)。我们称之为边界。它可以从 sure_bg 区域中减去 sure_fg 区域获得。 

# noise removal
kernel = np.ones((3,3),np.uint8)
opening = cv.morphologyEx(thresh,cv.MORPH_OPEN,kernel, iterations = 2)
# sure background area
sure_bg = cv.dilate(opening,kernel,iterations=3)
# Finding sure foreground area
dist_transform = cv.distanceTransform(opening,cv.DIST_L2,5)
ret, sure_fg = cv.threshold(dist_transform,0.7*dist_transform.max(),255,0)
# Finding unknown region
sure_fg = np.uint8(sure_fg)
unknown = cv.subtract(sure_bg,sure_fg)

看到结果。在阈值图像中,我们得到了一些我们确定硬币的硬币区域,现在它们已经分离。(在某些情况下,你可能只对前景分割感兴趣,而不是分离相互接触的物体。在这种情况下,你不需要使用距离变换,只需要侵蚀就足够了。侵蚀只是提取确定前景区域的另一种方法,那就是所有。) 

现在我们确定哪个是硬币区域,哪个是背景和所有。所以我们创建标记(它是一个与原始图像大小相同的数组,但是使用 int32 数据类型)并标记其中的区域。我们确切知道的区域(无论是前景还是背景)都标有任何正整数,但不同的整数,我们不确定的区域只是保留为零。为此,我们使用cv.connectedComponents()。它用 0 标记图像的背景,然后其他对象用从 1 开始的整数标记。

但我们知道,如果背景标记为 0,分水岭会将其视为未知区域。所以我们想用不同的整数来标记它。相反,我们将标记由未知定义的未知区域,为 0。

# Marker labelling
ret, markers = cv.connectedComponents(sure_fg)
# Add one to all labels so that sure background is not 0, but 1
markers = markers+1
# Now, mark the region of unknown with zero
markers[unknown==255] = 0

 查看 JET 色彩映射中显示的结果。深蓝色区域显示未知区域。确定的硬币用不同的值着色。与未知区域相比,确定背景的剩余区域以浅蓝色显示

现在我们的标记准备好了。现在是最后一步的时候,应用分水岭。然后将修改标记图像。边界区域将标记为-1。 

markers = cv.watershed(img,markers)
img[markers == -1] = [255,0,0]

请参阅下面的结果。对于某些硬币,它们触摸的区域被正确分割,而对于某些硬币则不然。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/706132.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

强化学习入门

简介 强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化…

学习笔记——网络管理与运维——概述(网络管理)

二、概述 1、什么是网络管理? 网络管理是通过对网络中设备的管理,保证设备工作正常,使通信网络正常地运行,以提供高效、可靠和安全的通信服务,是通信网络生命周期中的重要一环。 2、网络管理分类 网络管理(Network …

uni-ui:基于uni-app的全端兼容高性能UI框架

一、引言 在移动应用开发领域,跨平台框架因其能够降低开发成本、提高开发效率而备受开发者青睐。其中,uni-app作为一个使用Vue.js开发所有前端应用的框架,不仅支持编译到iOS、Android、H5、以及各种小程序等多个平台,还因其丰富的…

unDraw —— 免费且可定制的插画库,为您的设计注入灵魂

🎨 unDraw —— 免费且可定制的插画库,为您的设计注入灵魂 在寻找能够完美融入您品牌风格的插画吗?unDraw,一个提供大量免费插画资源的网站,可能是您的理想选择! 🌐 网站特色 免费且开源 unDraw…

C#聊天室②

客户端 桌面 MyClient client;public Form1(){InitializeComponent();}// 进入聊天室按钮方法private void button1_Click(object sender, EventArgs e){if (!string.IsNullOrEmpty(textBox1.Text)){// 开始连接服务器 封装一个自定义客户端类client new MyClient(); // 给cl…

Docker overlay磁盘使用100%处理方法overlay 100%

一、问题描述 服务器上运行了几个docker容器,运行个一周就会出现overlay 100%的情况,经查找,是容器里生成了很多core.xxx的文件导致的。 二、解决方法 首先通过以下命令查看: df -h 可以看的overlay已经100%了,进入到/var/lib/d…

11_从注意力机制到序列处理的革命:Transformer原理详解

1.1 简介 Transformer是一种深度学习模型,主要用于处理序列数据,尤其是自然语言处理任务,如机器翻译、文本摘要等。该模型由Vaswani等人在2017年的论文《Attention is All You Need》中首次提出,它的出现极大地推动了自然语言处理…

计算机msvcp100.dll丢失怎么办,分享5种亲测有效的解决方法

电脑已经成为我们生活中不可或缺的一部分。然而,在使用电脑的过程中,我们常常会遇到一些问题,其中之一就是电脑提示缺失msvcp100.dll。这个问题可能会让我们感到困惑和烦恼,但是只要我们了解其原因并采取相应的解决方法&#xff0…

React-配置json-server

安装json-server:json-server工具准备后端接口服务环境_jsonserver临时后端-CSDN博客 在package.json文件中的scripts添加: "serve":"json-server json文件路径 --port 端口号" 在终端输入命令npm run serve,就可以启动…

SPI通信外设

SPI外设介绍 时钟频率就是SCK波形的频率,一个SCK时钟交换一个bit,所以时钟频率一般体现的是传输速度,单位是Hz或者bit/s。可以看出来,SPI的时钟其实就是由pclk分频得来的,pclk就是外设时钟,APB2的PCLK就是7…

重复文件怎么查找并清理?6种重复文件清理方法亲测好用!

重复文件怎么查找并清理?重复的文件会占用计算机中不必要的空间,从而降低计算机速度。这些文件是您设备上现有文件的副本。您可能有照片、视频、音频、档案、文档等的文件副本。因此,当电脑被这些文件占用运行速度时,你会迫切地希…

Java项目:111 基于SpringBoot的在线家具商城设计与实现

作者主页:舒克日记 简介:Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 本系统有管理员和用户两个角色,包括前台商城平台及后台管理系统。 前台商城系统包含首页门户、商品推荐、商品搜索、商品展示、购物车、订…

探索Java 8 Stream API:现代数据处理的新纪元

Stream流 Stream初探:何方神圣? Stream流是一种处理集合数据的高效工具,它可以让你以声明性的方式处理数据集合。Stream不是存储数据的数据结构,而是对数据源(如集合、数组)的运算操作概念,支…

❤vue2项目webpack打包的优化策略

❤ vue2项目webpack打包的优化策略 (优化前) 现在我们的打包时间为: >打包体积大小为: 1、去除开发环境和生产环境提示以及日志 开发环境和生产环境的打印处理 生产环境去除console.log打印的两种方式 通过环境变量控制co…

一张图读懂天然气气源

一张图读懂天然气气源

《pvz植物大战僵尸杂交版》V2.0.88整合包火爆全网,支持安卓、ios、电脑等!

今天来给大家安利一款让人欲罢不能的游戏——《植物大战僵尸杂交版》2.0.88版。这可不是普通的植物大战僵尸,它可是席卷了B站,火爆全网的存在! 先说说这个版本,它可是网络上现存最全的植物大战僵尸杂交版整合包。里面不仅有修改工…

tkinter文本对齐方式

tkinter文本对齐方式 文本对齐方式效果代码 文本对齐方式 左对齐(left):默认对齐方式,文本从左边界开始。右对齐(right):文本从右边界开始。居中对齐(center)&#xff1…

NVIDIA MPS详解

NVIDIA 文章目录 NVIDIANVIDIA MPS介绍一、MPS作用二、MPS实例MPS与Hyper-Q区别Pascal架构和Volta架构不同架构上的MPS实现MPS基准测试MPS的使用MPS组成MPS执行过程开启与关闭MPS Volta MPS资源配置公平性MPS程序示例编写开启MPS脚本编写执行程序编写关闭MPS脚本运行MPS脚本运行…

linux部署运维3——centos7.9离线安装部署配置涛思taos2.6时序数据库TDengine以及java项目链接问题处理(二)

上一篇讲了centos7.9如何安装涛思taos2.6时序数据库的操作步骤和方案,本篇主要讲解taos数据库的初始化,相关配置说明,数据库和表的创建问题以及java项目连接问题。 centos7.9如何离线安装taos2.6,请点击下方链接详细查看&#xf…

新疆在线测宽仪配套软件实现的9大功能!

在线测宽仪可应用于各种热轧、冷轧板带材的宽度尺寸检测,材质不限,木质、钢制、铁质、金属、纸质、塑料、橡胶等都可以进行无损非接触式的检测,在各式各样的产线应用中,有些厂家,需要更加详尽完备的分析信息&#xff0…