深度学习500问——Chapter10:迁移学习(3)

文章目录

11.3 迁移学习的常用方法

11.3.1 数据分布自适应

11.3.2 边缘分布自适应

11.3.3 条件分布自适应

11.3.4 联合分布自适应

11.3.5 概率分布自适应方法优劣性比较

11.3.6 特征选择

11.3.7 统计特征对齐方法


11.3 迁移学习的常用方法

11.3.1 数据分布自适应

数据分布自适应(Distribution Adaption)是一类最常用的迁移学习方法。这种方法的基本思想是,由于源域和目标域的数据概率分布不同,那么最直接的方式就是通过一些变换,将不同的数据分布的距离拉近。

图19 形象地表示了几种数据分布的情况,简单来说,数据的边缘分布不同,就是数据整体不相似。数据的条件分布不同,就是数据整体相似,但是具体到每个类里,都不太相似。

图19 不同数据分布的目标域数据

根据数据分布的性质,这类方法又可以分为边缘分布自适应、条件分布自适应以及联合分布自适应。下面我们分别介绍每类方法的基本原理和代表性研究工作。介绍每类研究工作时,我们首先给出基本思路,然后介绍该类方法的核心,最后结合最近的相关工作介绍该类方法的扩展。

11.3.2 边缘分布自适应

边缘分布自适应方法(Marginal Distribution Adaption)的目标是减小源域和目标域的边缘概率分布的距离,从而完成迁移学习。从形式上来说,边缘分布自适应方法是用P(Xs)和 P(Xt)之间的距离来近似两个领域之间的差异。即:

DISTANCE(Ds,Dt)\approx\lVert P(X_s)-P(X_t)\Vert

边缘分布自适应对应于图19中由图19(a) 迁移到 图19(b)的情形。

11.3.3 条件分布自适应

条件分布自适应方法(Condational Distribution Adaptation)的目标是减小源域和目标域的条件概率分布的距离,从而完成迁移学习。从形式上来说,条件分布自适应方法是用 P(ys|Xs) 和 P (yt|Xt)之间的距离来近似两个领域之间的差异。即:

DISTANCE(Ds,Dt)\approx\lVert P(y_s|X_s)-P(y_t|X_t)\Vert

条件分布自适应对应于图19中由19(a) 迁移到 图19(c)的情形。

目前单独利用条件分布自适应的工作较少,这种工作主要可以在[Saito et al.,2017]中找到。最近,中科院计算所的Wang等人提出了STL方法(Stratified Transfer Learning)[Wang et al.,2018]。作者提出了类内迁移(Intra-class Transfer)的思想,指出现有的绝大多数方法都只是学习一个全局的特征变换(Global DomainShift),而忽略了类内的相似性。类内迁移可以利用类内特征,实现更好的迁移效果。

STL方法的基本思路如图所示,首先利用大多数投票的思想,对无标定的位置行为生成伪标;然后在再生核希尔伯特空间中,利用类内相关性进行自适应地空间降维,使得不同情境中的行为数据之间的相关性增大;最后,通过二次标定,实现对未知标定数据的精准标定。

图21  STL 方法的示意图

11.3.4 联合分布自适应

​ 联合分布自适应方法 (Joint Distribution Adaptation) 的目标是减小源域和目标域的联合概率分布的距离,从而完成迁移学习。从形式上来说,联合分布自适应方法是用P(xs) 和P(xt)之间的距离、以及P(ys|xs)和P(yt|xt)之间的距离来近似两个领域之间的差异。即:

DISTANCE(Ds,Dt)\approx\lVert P(X_s)-P(X_t)\Vert-\lVert P(y_s|X_s)-P(y_t|X_t)\Vert

​ 联合分布自适应对应于图19中由图19(a)迁移到图19(b)的情形、以及图19(a)迁移到 图19(c)的情形。

11.3.5 概率分布自适应方法优劣性比较

综合上述三种概率分布自适应方法,我们可以得出如下的结论:

  1. 精度比较:BDA > JDA > TCA > 条件分布自适应。
  2. 将不同的概率分布自适应方法用于神经网络,是一个发展趋势。图23展示的结果表明将概率分布适配加入到深度网络中,往往会取得比非深度学习更好的结果。

图22 BDA方法的效果

图23 不同分布自适应方法的精度比较

11.3.6 特征选择

特征选择的基本假设是:源域和目标域中均含有一部分公共的特征,在这部分公共的特征,源域和目标域的数据分布是一致的。因此,此类方法的目标就是,通过机器学习方法,选择出这部分共享的特征,即可依据这些特征构建模型。

图24形象地表示了特征选择法的主要思路。

图24 特征选择法示意图

​ 这这个领域比较经典的一个方法是发表在 2006 年的 ECML-PKDD 会议上,作者提出了一个叫做 SCL 的方法 (Structural Correspondence Learning) [Blitzer et al.,2006]。这个方法的目标就是我们说的,找到两个领域公共的那些特征。作者将这些公共的特征叫做Pivot feature。找出来这些Pivot feature,就完成了迁移学习的任务。

图25 特征选择法中的 Pivot feature 示意图

​ 图 25形象地展示了 Pivot feature 的含义。 Pivot feature指的是在文本分类中,在不同领域中出现频次较高的那些词。总结起来:

  • 特征选择法从源域和目标域中选择提取共享的特征,建立统一模型
  • 通常与分布自适应方法进行结合
  • 通常采用稀疏表示 ||A||2,1 实现特征选择

11.3.7 统计特征对齐方法

​ 统计特征对齐方法主要将数据的统计特征进行变换对齐。对齐后的数据,可以利用传统机器学习方法构建分类器进行学习。SA方法(Subspace Alignment,子空间对齐)[Fernado et al.,2013]是其中的代表性成果。SA方法直接寻求一个线性变换M,将不同的数据实现变换对齐。SA方法的优化目标如下:

则变换 M 的值为:

可以直接获得上述优化问题的闭式解:

​ SA 方法实现简单,计算过程高效,是子空间学习的代表性方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/704912.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【配置教程】Linux在企业端为何如此重要

目录 本节重点 先见一下什么是Linux 后台vs前台 企业为何选择使用Linux作为后台服务器 国内企业后台和用户使用Linux现状 1. IT服务器Linux系统应用领域 2. 嵌入式Linux系统应用领域 3. 个人桌面应用领域 Linux时代发展 版本更新 ​编辑 就个人找工作/能力提升来说…

sklearn深度学习指南:掌握机器学习的利器

sklearn深度学习指南:掌握机器学习的利器! 1. 简介1.1 什么是sklearn?1.2 sklearn的优势和应用领域1.3 为什么要学习和使用sklearn? 2. 安装和环境设置2.1 如何安装sklearn?安装Anaconda(Windows/macOS/Lin…

利用泽攸科技原位TEM技术揭示真空击穿过程中电场与电极材料相互作用

在高能物理设备和许多其他设备中,真空击穿(VBD)现象对高能物理设备的性能造成了严重的阻碍,包括真空断路器、X射线源、聚变反应堆以及粒子加速器等。然而由于对导致VBD的机制缺乏足够的科学理解,这些问题至今无法得到缓…

618哪些数码产品比较好?2024超高人气产品推荐!

随着6.18大促的脚步渐近,你是否已经按捺不住内心的激动,想要在网络购物的海洋中畅游,尽情享受购物的狂欢?然而,面对繁多的商品和各式各样的优惠活动,你是否感到了一丝迷茫?作为一位经验丰富的网…

一带一路情 相逢《中国缘》-诗琳探访湘西墨戎苗寨交流有感

一带一路情 相逢《中国缘》 诗琳探访湘西墨戎苗寨交流有感 5月21日至25日,《中国缘》栏目组组织的走进湘西苗疆边陲的文化交流活动,在群山环抱、绿树成荫、人文厚重的湘西古丈墨戎苗寨美丽绽放。这场以民间角度推演的中国和中亚人民的文化交流活动&am…

沉降观测点的定义、重要性、建设与选择

沉降观测点,简称沉降点,是指在建筑物、构筑物或地基等结构物上设置的用于测量其垂直位移(沉降)的特定位置。这些点通常被标记并安装相应的监测设备,以便长期、连续地监测结构物的沉降情况。 点击输入图片描述(最多30字&#xff09…

Kong AI Gateway 正式 GA !

Kong Gateway 3.7 版本已经重磅上线,我们给 AI Gateway 带来了一系列升级,下面是 AI Gateway 的更新亮点一览。 AI Gateway 正式 GA 在 Kong Gateway 的最新版本 3.7 中,我们正式宣布 Kong AI Gateway 达到了通用可用性(GA&…

MySQL 5.7详细下载安装配置教程(MySQL 5.7安装包)_mysql5.7的安装教程

记录MySQL 5.7 的下载安装教程,并提供了Mysql 安装包 ,以下是详细下载安装过程。 一、下载Mysql安装包 网盘下载: 下载MySQL 5.7安装包,网盘下载地址:点击此处直接下载 官网下载: 进入官网&#xff0c…

云消息队列 ApsaraMQ 成本治理实践(文末附好礼)

作者:家泽、稚柳 前言: 在 AI 原生应用架构浪潮中,消息队列需支持大规模数据和复杂 AI 模型训练与推理场景下的高效异步通信,其成本效益优化也日益受到重视。面对大模型或大数据量,消息量显著增加,云消息…

利用python爬虫采集苹果公司各产品销售收入统计报告

数据为2013年到2022年苹果公司各产品(iPhone、iPad、Mac等)及服务的销售收入。iPhone是苹果公司销售收入最高的产品。 数据统计单位为:亿美元 。 数据说明: 数据整理自苹果公司历年10-K文件,每年10-K文件可能对之前年…

构建企业核心竞争力:拥有自主大模型,引领行业未来

前言 随着人工智能技术的飞速发展,大模型技术已经成为推动行业进步的重要力量。在这个变革的时代,作为一位具有前瞻性的企业家,您深知拥有自主大模型对于提升公司竞争力、引领行业未来的重要性。本文将为您详细介绍大模型的市场现状以及企业…

SpringBoot的Mybatis-plus实战之基础知识

文章目录 MybatisPlus 介绍一、MyBatisPlus 集成步骤第一步、引入依赖第二步、定义mapper 二、注解TableNameTableldTableField 三、配置文件四、加解密实现步骤 在SpringBoot项目中使用Mybatis-plus,记录下来,方便备查。 MybatisPlus 介绍 为简化开发而…

亚信科技&用友,助力四川腾翔打通数据壁垒,跑出转型加速度

近日,亚信科技携手用友依托“AntDBU8C”联合产品,助力四川腾翔人力资源管理有限公司(以下简称:腾翔)打通“人力资源”与“财务”两大业务系统,实现高水平的数据互通、共享和应用,助力业务降本增…

【python】 pandas.DataFrame.to_json 函数

【python】 pandas.DataFrame.to_json 函数 写在最前面一、什么是 JSON?【性能对比】python读取json和直接从orcle数据库读,哪个更快?性能对比适用场景综合考虑 二、to_json 函数概述参数详解1. path_or_buf2. orient4. double_precision5. f…

基于开源模型搭建Agent系统教程

一篇非常基础非常基础的Agent博客 大型语言模型(LLMs)经过causal language modeling训练后,可以处理各种任务,但它们通常在逻辑、计算和搜索等基本任务上表现不佳。最糟糕的情况是,它们在某个领域(如数学&…

MT2093 活动安排

贪心策略&#xff1a; 每次选择结束时间最早的活动 代码&#xff1a; #include <bits/stdc.h> using namespace std; const int N 5e5 10; int n; struct pp {int a, b; } p[N]; bool cmp(pp x, pp y) {return x.b < y.b; } int ans 0;int main() {cin >>…

KafkaQ - 好用的 Kafka Linux 命令行可视化工具

鉴于并没有在网上找到比较好的linux平台的kafka可视化工具&#xff0c;今天为大家介绍一下自己开发的在 Linux 平台上使用的可视化工具KafkaQ 虽然简陋&#xff0c;主要可以实现下面的这些功能&#xff1a; 1&#xff09;查看当前topic的分片数量和副本数量 2&#xff09;查…

实战计算机网络02——物理层

实战计算机网络02——物理层 1、物理层实现的功能2、数据与信号2.1 数据通信模型2.2 通信领域常用术语2.3 模拟信号和数字信号 3、信道和调制3.1 信道3.2 单工通信、半双工通信、全双工通信3.3 调制3.4 奈式准则3.5 香农定律 4、传输媒体4.1 导向传输媒体4.2 非导向传输媒体 5、…

JEPaaS 低代码平台 j_spring_security_check SQL注入漏洞复现

0x01 产品简介 JEPaaS是一款优秀的软件平台产品,可视化开发环境,低代码拖拽式配置开发,操作极其简单,可以帮助解决Java项目80%的重复工作,让开发更多关注业务逻辑,大大提高开发效率,能帮助公司大幅节省人力成本和时间成本,同时又不失灵活性。适用于搭建 OA、ERP、CRM、…

ONNX2NCNN工具

最近部署很多onnx转ncnn的操作&#xff0c;发现还是需要有页面操作会比较好&#xff0c;而且需要查询onnx的图&#xff0c;所以写了一个工具来搭配使用 建议搭配Netron 来使用 打开模型 选择打开-》选择onnx模型 显示基础信息 查询onnx模型图 展示信息 点击“展示信息”&…