ICRA 2024:基于视觉触觉传感器的物体表⾯分类的Sim2Real双层适应⽅法

⼈们通常通过视觉来感知物体表⾯的性质,但有时需要通过触觉信息来补充或替代视觉信息。在机器⼈感知物体属性⽅⾯,基于视觉的触觉传感器是⽬前的最新技术,因为它们可以产⽣与表⾯接触的⾼分辨率 RGB 触觉图像。然⽽,这些图像需要⼤量的数据进⾏训练,⽽在现实世界中收集这些数据可能很困难。虽然已经提出了模拟器来解决这个问题,但它们很难以⾼保真度重现机械特性和光分布效果。因此,本⽂旨在通过使⽤从DIGIT传感器收集的少量真实未标记图像训练扩散模型(Diffusion Model)来填补模拟和真实图像之间的差距。

论⽂地址: https://arxiv.org/abs/2311.01380

作者提出了⼀个可以区分平⾯、曲线、边缘和⻆落四种类别的表⾯分类器,并使⽤从 YCB 模型集中的对象表⾯均匀采样的模拟图像进⾏训练。为了标记这些图像,作者在对象⽹格上采样点云,并使⽤⾃动过程评估每个点的局部曲率来提取标签。作者在⼗个 3D 打印的 YCB 对象上测试了分类器,并与仅使⽤模拟图像训练的分类器进⾏了⽐较。实验结果表明,作者的⽅法在分类任务中取得了更好的准确性。

1.相关⼯作

作者对⽐了其他基于视觉触觉传感器的物体表⾯分类的相关⼯作。

在 Sim2Real ⽅⾯,⼀些⼯作通过模拟真实传感器的⾏为来减⼩ Sim2Real 差距。还有⼀些⽅法试图减⼩模拟和真实图像之间的领域差异。与之不同,作者的⼯作是利⽤来⾃ TACTO 的模拟图像,通过在真实图像上训练的 DM 进⾏转换,以模拟凝㬵的真实变形和传感器的光传输。

Learning to Read
Braille: Bridging the Tactile Reality
Gap with Diffusion Models
https://arxiv.org/abs/2304.01182
这份⼯作中也采取了类似的⽅法,但是其使⽤的 DM 是使⽤附加深度的图⽚中训练出来的,⽽这些图⽚来⾃于
MidasTouch: Monte-Carlo
inference over distributions across sliding touch
https://arxiv.org/abs/2210.14210
训练的⽹络。在作者的例⼦中,并不需要这个⽹络,只依赖于 RGB 的图像。
在基于视觉触觉传感器的物体感知⽅⾯,没有直接使⽤基于视觉触觉传感器对物体表⾯进⾏分类的⼯作。作者参考了其它推断物体的类似属性的⼯作,如形状估计或识别表⾯上可能的接触点等。

2.⽅法

本⽂的⽅法主要包括两个层次的适应,以减⼩模拟和真实数据之间的差距,并提⾼分类性能。⾸先,本⽂采⽤概率 DM(Diffusion Model)来翻译模拟图像,以减⼩模拟和真实图像之间的领域差异。其次,本⽂使⽤领域对抗训练(Domain-Adversarial Training of Neural Networks,DANN)⽅法来进⼀步调整模型特征,以提⾼分类性能。
在这里插入图片描述

2.1模拟数据的获取和标记

⾸先,使⽤ Poisson disk sampling ⽅法从物体⽹格中提取均匀分布的点云,并考虑传感器在法线⽅向上的旋转和穿透深度,模拟 DIGIT 传感器产⽣的图像。然后,使⽤⼀个简单⽽有效的算法对点云中的每个点进⾏分类,将其标记为平⾯、曲线、边缘或⻆点。通过这种⽅式,⾃动化地获取和标记了模拟数据。整个过程确保了数据的多样性和标记的准确性。
在这里插入图片描述

2.2图像级适应
在这里插入图片描述

由于 DIGIT 传感器获得的模拟图像和真实图像表现出的显著差异,作者提出了⼀种⽆监督的转换⽅法来解决这两个域之间的域转移问题。具体来说,作者通过训练⼀个 DM 模型来根据模拟图像⽣成对应真实世界域的图像,在训练之后,可以在模拟图像中引⼊随机噪声,再通过 DM 反向降噪,最终⽣成对应真实⻛格的图像。
2.3特征级适应

虽然经过 DM 处理,图像的域移已经显著减少,但还存在⼀些残余的差异,为了解决这个问题,作者利⽤⼀种称为神经⽹络的对抗性域⾃适应训练(DANN)的经典对抗性⽅法来学习域不变表⽰。作者使⽤ Dinov2 的⽅法,使⽤预训练 ViT 作为特征提取器,并训练瓶颈层和分类器将特征映射到域不变空间和⽬标类别,并且使⽤判别器来区分真实和模拟图像,⽽瓶颈层则被优化为使两个域的特征⽆法区分。
在这里插入图片描述

2.4训练和测试数据集

作者⼀共使⽤三个数据集,第⼀个数据集Trainreal包含 5000 个从⽇常物品获取的真实图像。第⼆个数据集Trainsim包括从 10 个YCB 物体⽣成的 50000 个模拟图像。第三个数据集Testreal包含 792 个从3D 打印的YCB物体获取的真实图像,⽤于评估⽬的。这些数据集⽤于训练扩散⽅法(DM)和使⽤领域对抗训练神经⽹络(DANN)的分类器,并在Testreal上进⾏测试。

3.实验结果

作者通过评估分类器在每个对象上的准确性和每个类别的 F1 分数,来评估分类器的性能。并进⾏了⼏项消融研究,以调查 DM 和 DANN 程序的作⽤。除了分类任务外,作者还将此⽅法应⽤于估计 6D 物体姿态的流⽔线(Pipeline)中,以展⽰其在实际任务中的有效性。

3.1表⾯分类实验

作者通过对⽐

None:未经过翻译的模拟图像

Tactile Diffusion: 上⽂提到的扩散模型图像翻译

Ours:论⽂中提出的⽅法并且对于每个对⽐项内,分别对⽐是否使⽤ DANN,结论如下
在这里插入图片描述

在这里插入图片描述

Accuracy
F1-Score根据实验结果,作者的⽅法在表⾯类型分类任务中表现出⾊,特别是在⻆部类别(corner)上取得不错的性能表现。实验结果表明,作者提出的分类器和⾃动标注程序的结合对于提供传感器在物体表⾯接触位置的假设是有⽤的。
3.2 6D 物体姿态估计实验

作者通过使⽤

Collision-aware In-hand
6D Object Pose Estimation using Multiple Vision-based Tactile Sensors
https://arxiv.org/abs/2301.13667
提到的算法来估计与 N 个触觉传感器接触的物体的 6D 姿态。通过输⼊触觉图像和机器⼈本体感知的传感器姿态来估计物体的 6D 姿态,并且替换了⽂中的假设提取部分,⽤本⽂提出的表⾯分类器来⽣成假设,之后在每个对象上使⽤了 3 个传感器进⾏实验,并结合了从分类实验中收集的多种传感器姿态。
实验通过⽐较输出姿态和基准姿态,评估位置误差和 ADI-AUC 指标,具体结果如下

本⽂⽅法相对于⼏何基准⽅法,在位置误差上减少了⼀半,旋转指标提⾼了超过⼗个百分点。实验结果表明了使⽤触觉反馈(表⾯分类器)显著降低了位置误差,并提⾼了旋转精度。由此验证了本⽂⽅法在实际应⽤中的有效性。
4.局限性与结论
在这里插入图片描述

虽然本⽂的⽅法在减少 Sim2Real 的域差异和提⾼物体表⾯分类与 6D 物体姿态估计的准确性⽅⾯表现出了显著优势,作者认为仍然存在 2 个⽅⾯的不⾜DIGIT传感器的弹性体需要适度的⼒才能突出表⾯差异。如果接触⼒不⾜,可能会影响⽅法的效果。扩散模型的训练和图像翻译时间较⻓,尽管模型在不同设备上⽆需重新训练,但时间消耗仍不可忽视。未来将探索本⽂⽅法在其他机器⼈任务中的应⽤,并研究新的适应机制以进⼀步提⾼分类精度,同时处理多表⾯同时接触的情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/704736.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

tmega128单片机控制的智能小车设计

第1章 绪论1.1 选题背景和意义 自第一台工业机器人诞生以来,机器人的民展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人工作的机器一…

六西格玛培训,让企业焕然一新,迎接新挑战!

在当今快速变革的商业环境中,企业要保持竞争力,就必须不断进化、优化和创新。而六西格玛培训,正是这一进化过程中的核心驱动力。 六西格玛培训不仅仅是一系列的技术和工具,更是一种深入骨髓的质量文化和持续改进的哲学。通过专业…

微服务架构 | nacos - [自动刷新配置方式 失效排查]

INDEX 1 配置方式1.1 springboot 配置1.2 springcloud 配置 2 失效排查2.1 常见失效场景2.1.1 配置不配套2.1.2 自动刷新未开启2.1.3 依赖冲突2.1.4 改错了配置文件 2.2 未知情况关键排查点 1 配置方式 nacos 的配置中心主要有两套配置方式,配置方式不互相共通&…

Qt绘图项目 - 简易表盘

发话少说&#xff0c;放码过来 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);~Widget();prot…

lammps聚合物断键拉伸模拟

本文介绍聚合物的断键拉伸。 在lammps模拟中&#xff0c;所有的键默认是永久存在的&#xff0c;非正常情况下&#xff0c;不能断开&#xff0c;否则会产生"bond atoms missing”错误。 聚合物的拉伸模拟过程中&#xff0c;聚合物链并没有被拉断&#xff0c;而只是把不同的…

探索Vue.js中的文件夹上传解决方案:vue-simple-uploader

在现代Web应用开发中&#xff0c;文件上传是一个常见需求。然而&#xff0c;随着应用复杂性的增加&#xff0c;传统的文件上传方式可能无法满足所有需求&#xff0c;特别是当涉及到文件夹上传和大文件处理时。本文将介绍一个基于Vue.js的解决方案——vue-simple-uploader&#…

小程序使用接口wx.getLocation配置

开通时需详细描述业务&#xff0c;否则可能审核不通过 可能需要绑定腾讯位置服务&#xff0c;新建应该&#xff0c;绑定到小程序 配置 权限声明&#xff1a;在使用wx.getLocation前&#xff0c;需要在app.json的permission字段中声明对用户位置信息的使用权限&#xff0c;并提…

Unity基础(一)unity的下载与安装

目录 一:下载与安装 1.官网下载地址 2.推荐直接下载UnityHub 3.选择编辑器版本(推荐长期支持版) 4.在UnityHub安装选择相应的模块 二:创建项目 简介: Unity 是一款广泛应用的跨平台游戏开发引擎。 它具有以下显著特点&#xff1a; 强大的跨平台能力&#xff1a;能将开发的游…

Linux系统安装ODBC驱动,统信服务器E版安装psqlodbc方法

应用场景 硬件/整机信息&#xff1a;AMD平台 OS版本信息&#xff1a;服务器e版 软件信息&#xff1a;psqlodbc 12.02版本 功能介绍 部分用户在使用etl工具连接数据库时&#xff0c;需要使用到odbc驱动&#xff0c;下面介绍下服务器e版系统中编译安装此工具的相关过程。 E…

借助大语言模型快速学习金仓数据库 KES

基础概念 KES 人大金仓数据库管理系统 KingbaseES&#xff08;KES&#xff09; 是由 北京人大金仓信息技术股份有限公司 (以下简称“人大金仓”)自主研发的面向全行业、全客户关键应用的企业级大型通用数据库管理系统。产品融合了人大金仓在数据库领域几十年的产品研发和企业级…

XML文件

1.XMl&#xff08;EXtensible Markup Language 可扩展标记语言&#xff09; 本质是一种数据的格式,可以用来存储复杂的数据结构&#xff0c;和数据关系 2.XML的特点 XMl中的“<标签名>”称为一个标签或一个元素,一般是成对出现XML中的标签名可以自己定义,但必须要正确…

WINUI——Trigger(触发器)使用小结

背景 WINUI不提供原生的Trigger支持&#xff0c;推荐使用VisualStateManager进行操作&#xff1b;然对于从WPF转WINUI的开发人员而言&#xff0c;经常会想用Trigger解决问题&#xff0c;鉴于此社区推出了CommunityToolkit.WinUI.Triggers以支持Trigger的使用。 使用方法 1.项…

JS实现文字溢出隐藏效果

需求场景 由于项目原因&#xff0c;经常需要使用到canvas来将dom生成为图片供用户保存&#xff0c;但canvas的css属性&#xff08;例如本文实现的文字溢出隐藏效果&#xff09;支持并不全面&#xff0c;所有有些功能只能用JS来实现了 实现思路 用JS循环判断填充文本后的元素…

NSS题目练习9

[极客大挑战 2020]welcome 界面打开后一片空白&#xff0c;查看题目描述&#xff0c;翻译过来是 1.除了GET请求方法&#xff0c;还有一种常见的请求方法… 2.学习一些关于sha1和array的知识。 3.更仔细地检查phpinfo&#xff0c;你会发现标志在哪里。 补充&#xff1a; sh…

基于MATLAB仿真的BCC卷积码维特比译码算法

&#x1f9d1;&#x1f3fb;个人简介&#xff1a;具有3年工作经验&#xff0c;擅长通信算法的MATLAB仿真和FPGA实现。代码事宜&#xff0c;私信博主&#xff0c;程序定制、设计指导。 &#x1f680;基于MATLAB仿真的BCC卷积码维特比译码算法 目录 &#x1f680;1.BCC卷积码概…

WebGIS开发:你还在纠结的10大问题合集!

问题1&#xff1a;GIS开发到底是学Java还是Python&#xff1f; Java是后端语言&#xff0c;Python更重数据分析和算法。 假设通常说的GIS开发是指Webgis&#xff0c;Web就是指网页端&#xff0c;所以我们说的GIS开发大部分情况下是指网页端的地图可视化开发。 GIS开发需要学…

AI预测福彩3D采取888=3策略+和值012路或胆码测试6月13日新模型预测第3弹

今天咱们继续验证新模型的8码定位3&#xff0c;目前新模型新算法已连续命中2次。咱们重点是预测8码定位3&#xff0b;和值012胆码。有些朋友看到我最近两篇文章没有给大家提供缩水后的预测详情&#xff0c;在这里解释下&#xff1a;其实我每篇文章中既有8码定位&#xff0c;也有…

113个大自然声音助眠纯音乐白噪音数据包

今天这一个数据包内置很多简单好听助眠纯音乐歌曲素材&#xff0c;可以帮助用户更好进行大自然声音聆听&#xff0c;带来更多简单舒适睡眠纯音乐环境&#xff0c;享受更多独特音乐听曲放松方式&#xff0c;帮助用户更好听歌助眠&#xff0c;获取更多好的睡眠环境以及质量&#…

​揭秘Grok大模型:未来AI的无限可能

&#x1f680; 大家好&#xff0c;今天我们要带大家走进一个充满未来科技感的世界&#xff0c;探秘一款备受瞩目的大模型——Grok&#xff01; 一、Grok背后的神秘力量 Grok&#xff0c;这个名字可能对于大多数人来说还是陌生的&#xff0c;但它背后的公司——xAI&#xff0c…

总脱发,白发多,解决“头等”大事,可以试试这个~

谁懂啊&#xff01;想当年发量傲人&#xff0c;如今却成了人间蒲公英。头发走哪掉哪&#xff0c;光1天掉的头发&#xff0c;收集起来都够编个辫子了。 更扎心的&#xff0c;是去理发时 Tony 不再问「打薄吗」&#xff0c;而是小心翼翼地提醒&#xff1a;「咱可以烫一下&#xf…