机器学习基础之《特征工程(4)—特征降维》

一、什么是特征降维

降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程

1、降维
降低维度
ndarry
    维数:嵌套的层数
    0维:标量,具体的数0 1 2 3...
    1维:向量
    2维:矩阵
    3维:多个二维数组嵌套
    n维:继续嵌套下去

2、特征降维降的是什么
降的是二维数组,特征是几行几列的,几行有多少样本,几列有多少特征
降低特征的个数(就是列数)

二、降维的两种方式

1、特征选择
2、主成分分析(可以理解一种特征提取的方式)

三、什么是特征选择

1、定义
数据中包含冗余或相关变量(或称特征、属性、指标等),旨在从原有特征中找出主要特征

2、例子:想要对鸟进行类别的区分

特征?
(1)羽毛颜色
(2)眼睛宽度
(3)眼睛长度
(4)爪子长度
(5)体格大小

比如还有的特征:是否有羽毛、是否有爪子,那这些特征就没有意义

3、方法
Filter(过滤式):主要探究特征本身特点、特征与特征和目标值之间关联
(1)方差选择法:低方差特征过滤,过滤掉方差比较低的特征
(2)相关系数:特征与特征之间的相关程度
(3)方差选择法在文本分类中表现非常不好,对噪声的处理能力几乎为0,还删除了有用的特征

Embedded(嵌入式):算法自动选择特征(特征与目标值之间的关联)
(1)决策树:信息熵、信息增益
(2)正则化:L1、L2
(3)深度学习:卷积等
(4)对于Embedded方式,只能在讲解算法的时候再进行介绍,更好的去理解

4、模块
sklearn.feature_selection

四、低方差特征过滤

1、删除低方差的一些特征,前面讲过方差的意义。再结合方差的大小来考虑这个方式的角度
(1)特征方差小:某个特征大多样本的值比较相近
(2)特征方差大:某个特征很多样本的值都有差别

2、API
sklearn.feature_selection.VarianceThreshold(threshold = 0.0)
删除所有低方差特征,设置一个临界值,低于临界值的都删掉
Variance:方差
Threshold:阈值

3、Variance.fit_transform(X)
X:numpy array格式的数据[n_samples, n_features]
返回值:训练集差异低于threshold的特征将被删除。默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征

4、数据计算
我们对某些股票的指标特征之间进行一个筛选,数据在factor_returns.csv文件当中,除去index、date、return列不考虑(这些类型不匹配,也不是所需要的指标)

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.feature_selection import VarianceThreshold
import jieba
import pandas as pd

def datasets_demo():
    """
    sklearn数据集使用
    """
    #获取数据集
    iris = load_iris()
    print("鸢尾花数据集:\n", iris)
    print("查看数据集描述:\n", iris["DESCR"])
    print("查看特征值的名字:\n", iris.feature_names)
    print("查看特征值几行几列:\n", iris.data.shape)
   
    #数据集的划分
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
    print("训练集的特征值:\n", x_train, x_train.shape)

    return None
 
def dict_demo():
    """
    字典特征抽取
    """
    data = [{'city': '北京','temperature':100},{'city': '上海','temperature':60},{'city': '深圳','temperature':30}]
    # 1、实例化一个转换器类
    transfer = DictVectorizer(sparse=False)

    # 2、调用fit_transform()
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    print("特征名字:\n", transfer.get_feature_names())

    return None

def count_demo():
    """
    文本特征抽取
    """
    data = ["life is short,i like like python", "life is too long,i dislike python"]
    # 1、实例化一个转换器类
    transfer = CountVectorizer()
    # 2、调用fit_transform()
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new.toarray())
    print("特征名字:\n", transfer.get_feature_names()) 

    return None

def count_chinese_demo():
    """
    中文文本特征抽取
    """
    data = ["我 爱 北京 天安门", "天安门 上 太阳 升"]
    # 1、实例化一个转换器类
    transfer = CountVectorizer()
    
    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new.toarray());
    print("特征名字:\n", transfer.get_feature_names())
    
    return None

def cut_word(text):
    """
    进行中文分词
    """
    return " ".join(list(jieba.cut(text)))  #返回一个分词生成器对象,强转成list,再join转成字符串

def count_chinese_demo2():
    """
    中文文本特征抽取,自动分词
    """
    # 1、将中文文本进行分词
    data = ["今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
        "我们看到的从很远星系来的光是在几百万年前之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
        "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]

    data_new = []
    for sent in data:
        data_new.append(cut_word(sent))
    print(data_new)
    # 2、实例化一个转换器类
    transfer = CountVectorizer()
    # 3、调用fit_transform()
    data_final = transfer.fit_transform(data_new)
    print("data_final:\n", data_final.toarray())
    print("特征名字:\n", transfer.get_feature_names())
    return None

def tfidf_demo():
    """
    用tf-idf的方法进行文本特征抽取
    """
    # 1、将中文文本进行分词
    data = ["今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
        "我们看到的从很远星系来的光是在几百万年前之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
        "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]

    data_new = []
    for sent in data:
        data_new.append(cut_word(sent))
    print(data_new)
    # 2、实例化一个转换器类
    transfer = TfidfVectorizer()
    # 3、调用fit_transform()
    data_final = transfer.fit_transform(data_new)
    print("data_final:\n", data_final.toarray())
    print("特征名字:\n", transfer.get_feature_names())
    return None

def minmax_demo():
    """
    归一化
    """
    # 1、获取数据
    data = pd.read_csv("dating.txt")
    #print("data:\n", data)
    data = data.iloc[:, 0:3] #行都要,列取前3列
    print("data:\n", data)
    # 2、实例化一个转换器
    transfer = MinMaxScaler()
    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    return None

def stand_demo():
    """
    标准化
    """
    # 1、获取数据
    data = pd.read_csv("dating.txt")
    #print("data:\n", data)
    data = data.iloc[:, 0:3] #行都要,列取前3列
    print("data:\n", data)
    # 2、实例化一个转换器
    transfer = StandardScaler()
    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    return None

def variance_demo():
    """
    过滤低方差特征
    """
    # 1、获取数据
    data = pd.read_csv("factor_returns.csv")
    #print("data:\n", data)
    data = data.iloc[:, 1:-2]
    print("data:\n", data)
    # 2、实例化一个转换器类
    transfer = VarianceThreshold(threshold=3)
    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new, data_new.shape)
    return None

if __name__ == "__main__":
    # 代码1:sklearn数据集使用
    #datasets_demo()
    # 代码2:字典特征抽取
    #dict_demo()
    # 代码3:文本特征抽取
    #count_demo()
    # 代码4:中文文本特征抽取
    #count_chinese_demo()
    # 代码5:中文文本特征抽取,自动分词
    #count_chinese_demo2()
    # 代码6: 测试jieba库中文分词
    #print(cut_word("我爱北京天安门"))
    # 代码7:用tf-idf的方法进行文本特征抽取
    #tfidf_demo()
    # 代码8:归一化
    #minmax_demo()
    # 代码9:标准化
    #stand_demo()
    # 代码10:低方差特征过滤
    variance_demo()

运行结果:

data:
       pe_ratio  pb_ratio    market_cap  return_on_asset_net_profit  du_return_on_equity            ev  earnings_per_share       revenue  total_expense
0       5.9572    1.1818  8.525255e+10                      0.8008              14.9403  1.211445e+12              2.0100  2.070140e+10   1.088254e+10
1       7.0289    1.5880  8.411336e+10                      1.6463               7.8656  3.002521e+11              0.3260  2.930837e+10   2.378348e+10
2    -262.7461    7.0003  5.170455e+08                     -0.5678              -0.5943  7.705178e+08             -0.0060  1.167983e+07   1.203008e+07
3      16.4760    3.7146  1.968046e+10                      5.6036              14.6170  2.800916e+10              0.3500  9.189387e+09   7.935543e+09
4      12.5878    2.5616  4.172721e+10                      2.8729              10.9097  8.124738e+10              0.2710  8.951453e+09   7.091398e+09
...        ...       ...           ...                         ...                  ...           ...                 ...           ...            ...
2313   25.0848    4.2323  2.274800e+10                     10.7833              15.4895  2.784450e+10              0.8849  1.148170e+10   1.041419e+10
2314   59.4849    1.6392  2.281400e+10                      1.2960               2.4512  3.810122e+10              0.0900  1.731713e+09   1.089783e+09
2315   39.5523    4.0052  1.702434e+10                      3.3440               8.0679  2.420817e+10              0.2200  1.789082e+10   1.749295e+10
2316   52.5408    2.4646  3.287910e+10                      2.7444               2.9202  3.883803e+10              0.1210  6.465392e+09   6.009007e+09
2317   14.2203    1.4103  5.911086e+10                      2.0383               8.6179  2.020661e+11              0.2470  4.509872e+10   4.132842e+10

[2318 rows x 9 columns]
data_new:
 [[ 5.95720000e+00  1.18180000e+00  8.52525509e+10 ...  1.21144486e+12
   2.07014010e+10  1.08825400e+10]
 [ 7.02890000e+00  1.58800000e+00  8.41133582e+10 ...  3.00252062e+11
   2.93083692e+10  2.37834769e+10]
 [-2.62746100e+02  7.00030000e+00  5.17045520e+08 ...  7.70517753e+08
   1.16798290e+07  1.20300800e+07]
 ...
 [ 3.95523000e+01  4.00520000e+00  1.70243430e+10 ...  2.42081699e+10
   1.78908166e+10  1.74929478e+10]
 [ 5.25408000e+01  2.46460000e+00  3.28790988e+10 ...  3.88380258e+10
   6.46539204e+09  6.00900728e+09]
 [ 1.42203000e+01  1.41030000e+00  5.91108572e+10 ...  2.02066110e+11
   4.50987171e+10  4.13284212e+10]] (2318, 8)

五、相关系数

1、皮尔逊相关系数(Pearson Correlation Coefficient)
反映变量之间相关关系密切程度的统计指标

2、公式计算案例
(1)公式

(2)比如说我们计算年广告费投入与月均销售额

(3)那么之间的相关系数怎么计算

(4)最终计算

(5)结果=0.9942
所以我们最终得出结论是广告投入费与月平均销售额之间有高度的正相关关系

4、API
from scipy.stats import pearsonr
X:(N,) array_like
Y:(N,) array_like
Returns:(Pearson’s correlation coefficient, p-value),返回值是两个
注:pandas上面也有这个求相关系数的方法

5、案例:股票的财务指标相关性计算
计算某两个变量之间的相关系数
data [ ] 里面的关键字要用你自己表里面的列名

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.feature_selection import VarianceThreshold
from scipy.stats import pearsonr
import jieba
import pandas as pd

def datasets_demo():
    """
    sklearn数据集使用
    """
    #获取数据集
    iris = load_iris()
    print("鸢尾花数据集:\n", iris)
    print("查看数据集描述:\n", iris["DESCR"])
    print("查看特征值的名字:\n", iris.feature_names)
    print("查看特征值几行几列:\n", iris.data.shape)
   
    #数据集的划分
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
    print("训练集的特征值:\n", x_train, x_train.shape)

    return None
 
def dict_demo():
    """
    字典特征抽取
    """
    data = [{'city': '北京','temperature':100},{'city': '上海','temperature':60},{'city': '深圳','temperature':30}]
    # 1、实例化一个转换器类
    transfer = DictVectorizer(sparse=False)

    # 2、调用fit_transform()
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    print("特征名字:\n", transfer.get_feature_names())

    return None

def count_demo():
    """
    文本特征抽取
    """
    data = ["life is short,i like like python", "life is too long,i dislike python"]
    # 1、实例化一个转换器类
    transfer = CountVectorizer()
    # 2、调用fit_transform()
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new.toarray())
    print("特征名字:\n", transfer.get_feature_names()) 

    return None

def count_chinese_demo():
    """
    中文文本特征抽取
    """
    data = ["我 爱 北京 天安门", "天安门 上 太阳 升"]
    # 1、实例化一个转换器类
    transfer = CountVectorizer()
    
    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new.toarray());
    print("特征名字:\n", transfer.get_feature_names())
    
    return None

def cut_word(text):
    """
    进行中文分词
    """
    return " ".join(list(jieba.cut(text)))  #返回一个分词生成器对象,强转成list,再join转成字符串

def count_chinese_demo2():
    """
    中文文本特征抽取,自动分词
    """
    # 1、将中文文本进行分词
    data = ["今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
        "我们看到的从很远星系来的光是在几百万年前之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
        "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]

    data_new = []
    for sent in data:
        data_new.append(cut_word(sent))
    print(data_new)
    # 2、实例化一个转换器类
    transfer = CountVectorizer()
    # 3、调用fit_transform()
    data_final = transfer.fit_transform(data_new)
    print("data_final:\n", data_final.toarray())
    print("特征名字:\n", transfer.get_feature_names())
    return None

def tfidf_demo():
    """
    用tf-idf的方法进行文本特征抽取
    """
    # 1、将中文文本进行分词
    data = ["今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
        "我们看到的从很远星系来的光是在几百万年前之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
        "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]

    data_new = []
    for sent in data:
        data_new.append(cut_word(sent))
    print(data_new)
    # 2、实例化一个转换器类
    transfer = TfidfVectorizer()
    # 3、调用fit_transform()
    data_final = transfer.fit_transform(data_new)
    print("data_final:\n", data_final.toarray())
    print("特征名字:\n", transfer.get_feature_names())
    return None

def minmax_demo():
    """
    归一化
    """
    # 1、获取数据
    data = pd.read_csv("dating.txt")
    #print("data:\n", data)
    data = data.iloc[:, 0:3] #行都要,列取前3列
    print("data:\n", data)
    # 2、实例化一个转换器
    transfer = MinMaxScaler()
    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    return None

def stand_demo():
    """
    标准化
    """
    # 1、获取数据
    data = pd.read_csv("dating.txt")
    #print("data:\n", data)
    data = data.iloc[:, 0:3] #行都要,列取前3列
    print("data:\n", data)
    # 2、实例化一个转换器
    transfer = StandardScaler()
    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    return None

def variance_demo():
    """
    过滤低方差特征
    """
    # 1、获取数据
    data = pd.read_csv("factor_returns.csv")
    #print("data:\n", data)
    data = data.iloc[:, 1:-2]
    print("data:\n", data)
    # 2、实例化一个转换器类
    transfer = VarianceThreshold(threshold=3)
    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new, data_new.shape)
    # 4、计算某两个变量之间的相关系数
    r = pearsonr(data["pe_ratio"], data["pb_ratio"])
    print("相关系数:\n", r)
    return None

if __name__ == "__main__":
    # 代码1:sklearn数据集使用
    #datasets_demo()
    # 代码2:字典特征抽取
    #dict_demo()
    # 代码3:文本特征抽取
    #count_demo()
    # 代码4:中文文本特征抽取
    #count_chinese_demo()
    # 代码5:中文文本特征抽取,自动分词
    #count_chinese_demo2()
    # 代码6: 测试jieba库中文分词
    #print(cut_word("我爱北京天安门"))
    # 代码7:用tf-idf的方法进行文本特征抽取
    #tfidf_demo()
    # 代码8:归一化
    #minmax_demo()
    # 代码9:标准化
    #stand_demo()
    # 代码10:低方差特征过滤
    variance_demo()

运行结果:

data:
       pe_ratio  pb_ratio    market_cap  return_on_asset_net_profit  du_return_on_equity            ev  earnings_per_share       revenue  total_expense
0       5.9572    1.1818  8.525255e+10                      0.8008              14.9403  1.211445e+12              2.0100  2.070140e+10   1.088254e+10
1       7.0289    1.5880  8.411336e+10                      1.6463               7.8656  3.002521e+11              0.3260  2.930837e+10   2.378348e+10
2    -262.7461    7.0003  5.170455e+08                     -0.5678              -0.5943  7.705178e+08             -0.0060  1.167983e+07   1.203008e+07
3      16.4760    3.7146  1.968046e+10                      5.6036              14.6170  2.800916e+10              0.3500  9.189387e+09   7.935543e+09
4      12.5878    2.5616  4.172721e+10                      2.8729              10.9097  8.124738e+10              0.2710  8.951453e+09   7.091398e+09
...        ...       ...           ...                         ...                  ...           ...                 ...           ...            ...
2313   25.0848    4.2323  2.274800e+10                     10.7833              15.4895  2.784450e+10              0.8849  1.148170e+10   1.041419e+10
2314   59.4849    1.6392  2.281400e+10                      1.2960               2.4512  3.810122e+10              0.0900  1.731713e+09   1.089783e+09
2315   39.5523    4.0052  1.702434e+10                      3.3440               8.0679  2.420817e+10              0.2200  1.789082e+10   1.749295e+10
2316   52.5408    2.4646  3.287910e+10                      2.7444               2.9202  3.883803e+10              0.1210  6.465392e+09   6.009007e+09
2317   14.2203    1.4103  5.911086e+10                      2.0383               8.6179  2.020661e+11              0.2470  4.509872e+10   4.132842e+10

[2318 rows x 9 columns]
data_new:
 [[ 5.95720000e+00  1.18180000e+00  8.52525509e+10 ...  1.21144486e+12
   2.07014010e+10  1.08825400e+10]
 [ 7.02890000e+00  1.58800000e+00  8.41133582e+10 ...  3.00252062e+11
   2.93083692e+10  2.37834769e+10]
 [-2.62746100e+02  7.00030000e+00  5.17045520e+08 ...  7.70517753e+08
   1.16798290e+07  1.20300800e+07]
 ...
 [ 3.95523000e+01  4.00520000e+00  1.70243430e+10 ...  2.42081699e+10
   1.78908166e+10  1.74929478e+10]
 [ 5.25408000e+01  2.46460000e+00  3.28790988e+10 ...  3.88380258e+10
   6.46539204e+09  6.00900728e+09]
 [ 1.42203000e+01  1.41030000e+00  5.91108572e+10 ...  2.02066110e+11
   4.50987171e+10  4.13284212e+10]] (2318, 8)
相关系数:
 (-0.004389322779936261, 0.8327205496564927)

相关系数:
 (-0.004389322779936261, 0.8327205496564927)
前面一个是相关系数,比较接近于0,说明这两者不太相关
后面是p-value,假设H0:x,y不相关,p-value越大,H0成立的概率越大。p-value值表示显著水平,越小越好
所以这里是说明前面的相关系数成立的可能性很大

6、特征与特征之间相关性很高怎么办
(1)选取其中一个
(2)加权求和
比如revenue和total_expense相关性高,各占50%
(3)主成分分析

7、用图片展示相关性
安装matplotlib
(1)先安装Pillow
参考资料:https://pillow.readthedocs.io/en/latest/installation.html
python3 -m pip install --upgrade pip
python3 -m pip install --upgrade Pillow
(2)再安装matplotlib
pip3 install matplotlib

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.feature_selection import VarianceThreshold
from scipy.stats import pearsonr
import jieba
import pandas as pd
import matplotlib.pyplot as plt

def datasets_demo():
    """
    sklearn数据集使用
    """
    #获取数据集
    iris = load_iris()
    print("鸢尾花数据集:\n", iris)
    print("查看数据集描述:\n", iris["DESCR"])
    print("查看特征值的名字:\n", iris.feature_names)
    print("查看特征值几行几列:\n", iris.data.shape)
   
    #数据集的划分
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
    print("训练集的特征值:\n", x_train, x_train.shape)

    return None
 
def dict_demo():
    """
    字典特征抽取
    """
    data = [{'city': '北京','temperature':100},{'city': '上海','temperature':60},{'city': '深圳','temperature':30}]
    # 1、实例化一个转换器类
    transfer = DictVectorizer(sparse=False)

    # 2、调用fit_transform()
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    print("特征名字:\n", transfer.get_feature_names())

    return None

def count_demo():
    """
    文本特征抽取
    """
    data = ["life is short,i like like python", "life is too long,i dislike python"]
    # 1、实例化一个转换器类
    transfer = CountVectorizer()
    # 2、调用fit_transform()
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new.toarray())
    print("特征名字:\n", transfer.get_feature_names()) 

    return None

def count_chinese_demo():
    """
    中文文本特征抽取
    """
    data = ["我 爱 北京 天安门", "天安门 上 太阳 升"]
    # 1、实例化一个转换器类
    transfer = CountVectorizer()
    
    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new.toarray());
    print("特征名字:\n", transfer.get_feature_names())
    
    return None

def cut_word(text):
    """
    进行中文分词
    """
    return " ".join(list(jieba.cut(text)))  #返回一个分词生成器对象,强转成list,再join转成字符串

def count_chinese_demo2():
    """
    中文文本特征抽取,自动分词
    """
    # 1、将中文文本进行分词
    data = ["今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
        "我们看到的从很远星系来的光是在几百万年前之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
        "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]

    data_new = []
    for sent in data:
        data_new.append(cut_word(sent))
    print(data_new)
    # 2、实例化一个转换器类
    transfer = CountVectorizer()
    # 3、调用fit_transform()
    data_final = transfer.fit_transform(data_new)
    print("data_final:\n", data_final.toarray())
    print("特征名字:\n", transfer.get_feature_names())
    return None

def tfidf_demo():
    """
    用tf-idf的方法进行文本特征抽取
    """
    # 1、将中文文本进行分词
    data = ["今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
        "我们看到的从很远星系来的光是在几百万年前之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
        "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]

    data_new = []
    for sent in data:
        data_new.append(cut_word(sent))
    print(data_new)
    # 2、实例化一个转换器类
    transfer = TfidfVectorizer()
    # 3、调用fit_transform()
    data_final = transfer.fit_transform(data_new)
    print("data_final:\n", data_final.toarray())
    print("特征名字:\n", transfer.get_feature_names())
    return None

def minmax_demo():
    """
    归一化
    """
    # 1、获取数据
    data = pd.read_csv("dating.txt")
    #print("data:\n", data)
    data = data.iloc[:, 0:3] #行都要,列取前3列
    print("data:\n", data)
    # 2、实例化一个转换器
    transfer = MinMaxScaler()
    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    return None

def stand_demo():
    """
    标准化
    """
    # 1、获取数据
    data = pd.read_csv("dating.txt")
    #print("data:\n", data)
    data = data.iloc[:, 0:3] #行都要,列取前3列
    print("data:\n", data)
    # 2、实例化一个转换器
    transfer = StandardScaler()
    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    return None

def variance_demo():
    """
    过滤低方差特征
    """
    # 1、获取数据
    data = pd.read_csv("factor_returns.csv")
    #print("data:\n", data)
    data = data.iloc[:, 1:-2]
    print("data:\n", data)
    # 2、实例化一个转换器类
    transfer = VarianceThreshold(threshold=3)
    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new, data_new.shape)
    # 4、计算某两个变量之间的相关系数
    r1 = pearsonr(data["pe_ratio"], data["pb_ratio"])
    print("相关系数:\n", r1)
    r2 = pearsonr(data["revenue"], data["total_expense"])
    print("revenue与total_expense之间的相关性:\n", r2)
    #用图片展示相关性
    plt.figure(figsize=(20, 8), dpi=100)
    plt.scatter(data['revenue'], data['total_expense'])
    plt.show()
    return None

if __name__ == "__main__":
    # 代码1:sklearn数据集使用
    #datasets_demo()
    # 代码2:字典特征抽取
    #dict_demo()
    # 代码3:文本特征抽取
    #count_demo()
    # 代码4:中文文本特征抽取
    #count_chinese_demo()
    # 代码5:中文文本特征抽取,自动分词
    #count_chinese_demo2()
    # 代码6: 测试jieba库中文分词
    #print(cut_word("我爱北京天安门"))
    # 代码7:用tf-idf的方法进行文本特征抽取
    #tfidf_demo()
    # 代码8:归一化
    #minmax_demo()
    # 代码9:标准化
    #stand_demo()
    # 代码10:低方差特征过滤
    variance_demo()

六、主成分分析

1、什么是主成分分析(PCA)
定义:高维数据转化为低维数据的过程,在此过程中可能会舍弃原有数据、创造新的变量
作用:是数据维数压缩,尽可能降低原数据的维数(复杂度),损失少量信息
应用:回归分析或者聚类分析当中

2、如何最好的对一个立体的物体二维表示
现实中是一个水壶,拍成照片就是平面的
相当于将三维降到二维,在这个过程中可能就会有信息的损失
如何去衡量信息损失有多少,直观的检验方法是能不能通过二维的图像,能够还原出它还是一个水壶

从这四个图片中可以看到,最后一个能识别出是水壶,也就是说最后一个从三维降到二维它损失的信息是最少的

3、PCA计算过程
找到一个合适的直线,通过一个矩阵运算得出主成分分析的结果
PCA是一种数据降维的技术,它并不是将数据拟合到一个模型中,而是通过线性变换将原始的高维数据投影到一个低维的子空间中,使得投影后的数据仍然尽可能地保留原始数据的信息,同时减少了特征的数量和减少了冗余性

4、API
sklearn.decomposition.PCA(n_components=None)
将数据分解为较低维数空间
n_components:
如果传小数:表示保留百分之多少的信息
如果传整数:减少到多少特征

5、PCA.fit_transform(X)
X:numpy array格式的数据[n_samples, n_features]
返回值:转换后指定维度的array

6、数据计算

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.feature_selection import VarianceThreshold
from scipy.stats import pearsonr
from sklearn.decomposition import PCA
import jieba
import pandas as pd
import matplotlib.pyplot as plt

def datasets_demo():
    """
    sklearn数据集使用
    """
    #获取数据集
    iris = load_iris()
    print("鸢尾花数据集:\n", iris)
    print("查看数据集描述:\n", iris["DESCR"])
    print("查看特征值的名字:\n", iris.feature_names)
    print("查看特征值几行几列:\n", iris.data.shape)
   
    #数据集的划分
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
    print("训练集的特征值:\n", x_train, x_train.shape)

    return None
 
def dict_demo():
    """
    字典特征抽取
    """
    data = [{'city': '北京','temperature':100},{'city': '上海','temperature':60},{'city': '深圳','temperature':30}]
    # 1、实例化一个转换器类
    transfer = DictVectorizer(sparse=False)

    # 2、调用fit_transform()
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    print("特征名字:\n", transfer.get_feature_names())

    return None

def count_demo():
    """
    文本特征抽取
    """
    data = ["life is short,i like like python", "life is too long,i dislike python"]
    # 1、实例化一个转换器类
    transfer = CountVectorizer()
    # 2、调用fit_transform()
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new.toarray())
    print("特征名字:\n", transfer.get_feature_names()) 

    return None

def count_chinese_demo():
    """
    中文文本特征抽取
    """
    data = ["我 爱 北京 天安门", "天安门 上 太阳 升"]
    # 1、实例化一个转换器类
    transfer = CountVectorizer()
    
    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new.toarray());
    print("特征名字:\n", transfer.get_feature_names())
    
    return None

def cut_word(text):
    """
    进行中文分词
    """
    return " ".join(list(jieba.cut(text)))  #返回一个分词生成器对象,强转成list,再join转成字符串

def count_chinese_demo2():
    """
    中文文本特征抽取,自动分词
    """
    # 1、将中文文本进行分词
    data = ["今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
        "我们看到的从很远星系来的光是在几百万年前之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
        "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]

    data_new = []
    for sent in data:
        data_new.append(cut_word(sent))
    print(data_new)
    # 2、实例化一个转换器类
    transfer = CountVectorizer()
    # 3、调用fit_transform()
    data_final = transfer.fit_transform(data_new)
    print("data_final:\n", data_final.toarray())
    print("特征名字:\n", transfer.get_feature_names())
    return None

def tfidf_demo():
    """
    用tf-idf的方法进行文本特征抽取
    """
    # 1、将中文文本进行分词
    data = ["今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
        "我们看到的从很远星系来的光是在几百万年前之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
        "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]

    data_new = []
    for sent in data:
        data_new.append(cut_word(sent))
    print(data_new)
    # 2、实例化一个转换器类
    transfer = TfidfVectorizer()
    # 3、调用fit_transform()
    data_final = transfer.fit_transform(data_new)
    print("data_final:\n", data_final.toarray())
    print("特征名字:\n", transfer.get_feature_names())
    return None

def minmax_demo():
    """
    归一化
    """
    # 1、获取数据
    data = pd.read_csv("dating.txt")
    #print("data:\n", data)
    data = data.iloc[:, 0:3] #行都要,列取前3列
    print("data:\n", data)
    # 2、实例化一个转换器
    transfer = MinMaxScaler()
    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    return None

def stand_demo():
    """
    标准化
    """
    # 1、获取数据
    data = pd.read_csv("dating.txt")
    #print("data:\n", data)
    data = data.iloc[:, 0:3] #行都要,列取前3列
    print("data:\n", data)
    # 2、实例化一个转换器
    transfer = StandardScaler()
    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    return None

def variance_demo():
    """
    过滤低方差特征
    """
    # 1、获取数据
    data = pd.read_csv("factor_returns.csv")
    #print("data:\n", data)
    data = data.iloc[:, 1:-2]
    print("data:\n", data)
    # 2、实例化一个转换器类
    transfer = VarianceThreshold(threshold=3)
    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new, data_new.shape)
    # 4、计算某两个变量之间的相关系数
    r1 = pearsonr(data["pe_ratio"], data["pb_ratio"])
    print("相关系数:\n", r1)
    r2 = pearsonr(data["revenue"], data["total_expense"])
    print("revenue与total_expense之间的相关性:\n", r2)
    #用图片展示相关性
    plt.figure(figsize=(20, 8), dpi=100)
    plt.scatter(data['revenue'], data['total_expense'])
    plt.show()
    return None

def pca_demo():
    """
    PCA降维
    """
    data = [[2,8,4,5], [6,3,0,8], [5,4,9,1]]
    # 1、实例化一个转换器类
    transfer = PCA(n_components=3)
    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    # 1、实例化一个转换器类
    transfer2 = PCA(n_components=0.9)
    # 2、调用fit_transform
    data_new2 = transfer2.fit_transform(data)
    print("data_new2:\n", data_new2)
    return None

if __name__ == "__main__":
    # 代码1:sklearn数据集使用
    #datasets_demo()
    # 代码2:字典特征抽取
    #dict_demo()
    # 代码3:文本特征抽取
    #count_demo()
    # 代码4:中文文本特征抽取
    #count_chinese_demo()
    # 代码5:中文文本特征抽取,自动分词
    #count_chinese_demo2()
    # 代码6: 测试jieba库中文分词
    #print(cut_word("我爱北京天安门"))
    # 代码7:用tf-idf的方法进行文本特征抽取
    #tfidf_demo()
    # 代码8:归一化
    #minmax_demo()
    # 代码9:标准化
    #stand_demo()
    # 代码10:低方差特征过滤
    #variance_demo()
    # 代码11:PCA降维
    pca_demo()

运行结果:

data_new:
 [[ 1.28620952e-15  3.82970843e+00  5.26052119e-16]
 [ 5.74456265e+00 -1.91485422e+00  5.26052119e-16]
 [-5.74456265e+00 -1.91485422e+00  5.26052119e-16]]
data_new2:
 [[ 1.28620952e-15  3.82970843e+00]
 [ 5.74456265e+00 -1.91485422e+00]
 [-5.74456265e+00 -1.91485422e+00]]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/70429.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

认识http的方法、Header、状态码以及简单实现一个http的业务逻辑

文章目录 http的方法http状态码http重定向http常见Header实现简单业务逻辑Protocol.hppUtil.hppServer.hppServer.cc 效果 http的方法 方法说明支持的HTTP版本GET获取资源1.0/1.1POST传输实体主体1.0/1.1PUT传输文件1.0/1.1HEAD获得报文首部1.0/1.1DELETE删除文件1.0/1.1OPTIO…

【将回声引入信号中】在语音或音频文件中引入混响或简单回声,以研究回声延迟和回波幅度对生成的回波信号感知的影响(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

【杨辉三角的两种解法——(超级详细)】

杨辉三角 1.杨辉三角简介🕵️ 杨辉三角,是二项式系数在三角形中的一种几何排列。在欧洲,这个表叫做帕斯卡三角形。帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600…

分布式 - 消息队列Kafka:Kafka消费者的分区分配策略

文章目录 1. 环境准备2. range 范围分区策略介绍3. round-robin 轮询分区策略4. sticky 粘性分区策略5. 自定义分区分配策略 1. 环境准备 创建主题 test 有5个分区,准备 3 个消费者并进行消费,观察消费分配情况。然后再停止其中一个消费者,再…

fastadmin 自定义搜索分类和时间范围

1.分类搜索&#xff0c;分类信息获取----php 2.对应html页面&#xff0c;页面底部加搜索提交代码&#xff08;这里需要注意&#xff1a;红框内容&#xff09; 图上代码----方便直接复制使用 <script id"countrySearch" type"text/html"><!--form…

python之matplotlib入门初体验:使用Matplotlib进行简单的图形绘制

目录 绘制简单的折线图1.1 修改标签文字和线条粗细1.2 校正图形1.3 使用内置样式1.4 使用scatter()绘制散点图并设置样式1.5 使用scatter()绘制一系列点1.6 python循环自动计算数据1.7 自定义颜色1.8 使用颜色映射1.9 自动保存图表练习题 绘制简单的折线图 绘制一个简单折线图…

GPT-3.5 人工智能还是人工智障?——西红柿炒钢丝球!!

人工智能还是人工智障&#xff1f;——西红柿炒钢丝球 西红柿炒钢丝球的 基本信息西红柿炒钢丝球的 详细制作方法材料步骤 备注幕后花絮。。。。。。。。。关于GPT-3.5&#xff0c;你的看法&#xff1a; 西红柿炒钢丝球的 基本信息 西红柿炒钢丝球是一道具有悠久历史的传统中式…

springboot汽车租赁后台java出租客户管理jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目&#xff0c;Java EE JSP项目&#xff0c;在工作环境中基本使用不到&#xff0c;但是很多学校把这个当作编程入门的项目来做&#xff0c;故分享出本项目供初学者参考。 一、项目描述 springboot汽车租赁后台 系统有1权限&#xff1a;管理…

阿里巴巴面试题---考察对底层源代码的熟悉程度

题目如图所示: 很多人可能会觉得两个输出都会是false,因为我们都会觉得""比较的是引用类型的地址,虽然放入的值都一样但是重新创造了新对象,地址不一样,所以结果都是false. 然而,当我们运行程序会发现结果都是false. 下面,我们来分析为什么是这样的结果. 我们知道…

OneFlow 中的 Softmax

Softmax 是深度学习模型中的常见算子。PyTorch 的 Softmax 算子直接调用 cuDNN 的接口。而 OneFlow 内部针对输入数据的类别数量&#xff0c;采用3个 kernel 来分别处理&#xff0c;在多数情况下都可以获得比 cuDNN 更优的性能表现。测试结果可见 如何实现一个高效的Softmax CU…

未来混合动力汽车的发展:技术探索与前景展望

随着环境保护意识的增强和对能源消耗的关注&#xff0c;混合动力汽车成为了汽车行业的研发热点。混合动力汽车融合了传统燃油动力和电力动力系统&#xff0c;通过优化能源利用效率&#xff0c;既降低了燃油消耗和排放&#xff0c;又提供了更长的续航里程。本文将探讨混合动力汽…

配置docker,案例复现

配置docker(系统为centos) 1.检查操作系统环境: docker要求CentOS系统的内核版本高于 3.10 &#xff0c;通过 uname -r 命令查看你当前的内核版本是否支持安装docker 2.查看你是否拥有旧的版本&#xff0c;有的话卸载&#xff0c;没有的话直接略过该步骤 sudo yum remove d…

【快应用】list组件属性的运用指导

【关键词】 list、瀑布流、刷新、页面布局 【问题背景】 1、 页面部分内容需要瀑布流格式展示&#xff0c;在使用lsit列表组件设置columns进行多列渲染时&#xff0c;此时在里面加入刷新动画时&#xff0c;动画只占了list组件的一列&#xff0c;并没有完全占据一行宽度&…

“解锁IDEA的潜力:高级Java Maven项目配置指南”

目录 前言&#xff1a;流程目录&#xff1a;1.确保Java和Maven已安装检查Java是否已正确安装并配置环境变量 2.创建一个新的Maven项目导航到要创建项目的目录配置Maven运行以下命令创建一个新的Maven项目 3.配置项目的pom.xml文件打开项目根目录下的pom.xml文件配置Web.xml 4.配…

案例13 Spring MVC参数传递案例

基于Spring MVC实现HttpServletRequest、基本数据类型、Java Bean、数组、List、Map、JSON方式的参数传递。 1. 创建项目 选择Maven快速构建web项目&#xff0c;项目名称为case13-springmvc02。 2. 配置Maven依赖 <?xml version"1.0" encoding"UTF-8&quo…

Vue2(生命周期,列表排序,计算属性和监听器)

目录 前言一&#xff0c;生命周期1.1&#xff0c;生命周期函数简介1.2&#xff0c;Vue的初始化流程1.3,Vue的更新流程1.4&#xff0c; Vue的销毁流程1.5&#xff0c; 回顾生命周期1.,6&#xff0c;代码演示1.6-1&#xff0c;beforeCreate1.6-2&#xff0c;created1.6-3&#xf…

9.2.1Socket(UDP)

一.传输层: 1.UDP:无连接,不可靠,面向数据报,全双工. 2.TCP:有连接,可靠,面向字节流,全双工. 注意:这里的可不可靠是相对的,并且和安不安全无关. 二.UDP数据报套接字编程: 1.socket文件:表示网卡的这类文件. 2.DatagramPacket:表示一个UDP数据报. 三.代码实现: 1.回显服务…

Linux系列:从0到1用Docker部署springboot项目

目录 1.前提条件 2.编写DockerFile镜像文件 3.打包SpringBoot项目 4.通过软件Xftp进行传输&#xff08;*&#xff09; 1.点击“文件-新建”​编辑 5.操作远程主机 1.docker构建 2.容器运行 6.容器的关闭和删除 1.前提条件 Linux、docker、xftp的安装、一台可以访问的远…

自动驾驶——驶向未来的革命性技术

自动驾驶——驶向未来的革命性技术 自动驾驶的组件自动驾驶的优势自动驾驶的应用自动驾驶的未来中国的自动驾驶 自动驾驶是一种技术&#xff0c;它允许车辆在没有人类驾驶员的情况下自主地进行行驶。它利用各种传感器、计算机视觉、人工智能和机器学习算法来感知和理解周围环境…

Vim学习(三)—— Git Repo Gerrit

Git、Gerrit、Repo三者的概念及使用 三者各自作用&#xff1a; git&#xff1a;版本管理库&#xff0c;在git库中没有中心服务器的概念&#xff0c;真正的分布式。 repo&#xff1a;repo就是多个git库的管理工具。如果是多个git库同时管理&#xff0c;可以使用repo。当然使用…