深度学习500问——Chapter11:迁移学习(1)

文章目录

11.1 迁移学习基础知识

11.1.1 什么是迁移学习

11.1.2 为什么需要迁移学习

11.1.3 迁移学习的基本问题有哪些

11.1.4 迁移学习有哪些常用概念

11.1.5 迁移学习与传统机器学习有什么区别

11.1.6 迁移学习的核心及度量准则

11.1.7 迁移学习与其他概念的区别

11.1.8 什么是负迁移?产生负迁移的原因有哪些?

11.1.9 迁移学习的基本思路


11.1 迁移学习基础知识

11.1.1 什么是迁移学习

找到目标问题的相似性,迁移学习任务就是从相似性出发,将旧领域(domain)学习过的模型应用在新领域上。

11.1.2 为什么需要迁移学习

1. 大数据与少标注的矛盾:虽然有大量的数据,但往往都是没有标注的,无法训练机器学习模型。人工进行数据标定太耗时。

2. 大数据与弱计算的矛盾:普通人无法拥有庞大的数据量与计算资源。因此需要借助于模型的迁移。

3. 普适化模型与个性化需求的矛盾:即使是在同一个任务上,一个模型也往往难以满足每个人的个性化需求,比如特定的隐私设置。这就需要在不同人之间做模型的适配。

4. 特定应用(如冷启动)的需求。

11.1.3 迁移学习的基本问题有哪些

基本问题主要有3个:

  • How to transfer:如何进行迁移学习?(设计迁移方法)
  • What to transfer:给定一个目标领域,如何找到相对应的源领域,然后进行迁移?(源领域选择)
  • When to transfer:什么时候可以进行迁移,什么时候不可以?(避免负迁移)

11.1.4 迁移学习有哪些常用概念

基本定义:

  •         域(Domain):数据特征和特征分布组成,是学习的主体

                        源域(Source domain):已有知识的域

                        目标域(Target domain):要进行学习的域

  •         任务(Task):由目标函数和学习结果组成,是学习的结果。

按特征空间分类:

  •         同构迁移学习(Homogeneous TL):源域和目标域的特征空间相同,D_s=D_t
  •         异构迁移学习(Heterogeneous TL):源域和目标域的特征空间不同,D_s\ne D_t

按迁移情景分类:

  •         归纳式迁移学习(Inductive TL):源域和目标域的学习任务不同
  •         直推式迁移学习(Transductive TL):源域和目标域不同,学习任务相同
  •         无监督迁移学习(Unsupervised TL):源域和目标域均没有标签

按迁移方法分类:

  •         基于实例的迁移(Instance based TL):通过权重重用源域和目标域的样例进行迁移
  •         基于特征的迁移(Feature based TL):将源域和目标域的特征变换到相同空间
  •         基于模型的迁移(Parameter based TL):利用源域和目标域的参数共享模型
  •         基于关系的迁移(Relation based TL):利用源域中的逻辑网络关系进行迁移

11.1.5 迁移学习与传统机器学习有什么区别

迁移学习传统机器学习
数据分布训练和测试数据不需要分布训练和测试数据同分布
数据标签不需要足够的数据标注足够的数据标注
建模可以重用之前的模型每个任务分分别建模

11.1.6 迁移学习的核心及度量准则

迁移学习的总体思路可以概括为:开发算法来最大限度地利用有标注的领域的知识,来辅助目标领域的知识获取和学习。

迁移学习的核心是:找到源领域和目标领域之间的相似性,并加以合理利用。这种相似性非常普遍。比如,不同人的身体构造是相似的;自行车和摩托车的骑行方式是相似的;国际象棋和中国象棋是相似的;羽毛球和网球的打球方式是相似的。这种相似性也可以理解为不变量。以不变应万变,才能立于不败之地。

有了这种相似性后,下一步工作就是,如何度量和利用这种相似性。度量工作的目标有两点:一是很好地度量两个领域的相似性,不仅定性地告诉我们它们是否相似,更定量地给出相似程度。二是以度量为准则,通过我们所采用的学习手段,增大两个领域之间的相似性,从而完成迁移学习。

一句话总结:相似性是核心,度量准则是重要手段。

11.1.7 迁移学习与其他概念的区别

1. 迁移学习与多任务学习关系:

        多任务学习:多个相关任务一起协同学习;

        迁移学习:强调信息复用,从一个领域(domain)迁移到另一个领域。

2. 迁移学习与领域自适应:领域自适应:使两个特征分布不一致的domain一致。

3. 迁移学习与协方差漂移:协方差漂移:数据的条件概率分布发生变化。

11.1.8 什么是负迁移?产生负迁移的原因有哪些?

负迁移(Negative Transfer)指的是,在源阈上学习到的知识,对于目标域上的学习产生负面作用。

产生负迁移的原因主要有:

  • 数据问题:源域和目标域压根不相似,谈何迁移?
  • 方法问题:源域和目标域是相似的,但是,迁移学习方法不够好,没找到可迁移的成分。

负迁移给迁移学习的研究和应用带来了负面影响。在实际应用中,找到合理的相似性,并且选择或开发合理的迁移学习方法,能够避免负迁移现象。

11.1.9 迁移学习的基本思路

迁移学习的总体思路可以概括为:开发算法来最大限度地利用有标注的领域的知识,来辅助目标领域的知识获取和学习。

  1. 找到目标问题的相似性,迁移学习任务就是从相似性出发,将旧领域(domain)学习过的模型应用在新领域上。
  2. 迁移学习,是指利用数据、任务或模型之间的相似性,将在旧领域学习过的模型,应用于新领域的一种学习过程。
  3. 迁移学习最有用的场合是,如果你尝试优化任务B的性能,通常这个任务数据相对较少。例如,在放射科中你知道很难收集很多射线扫描图来搭建一个性能良好的放射科诊断系统,所以在这种情况下,你可能会找到一个相关但不同的任务上做的更好,尽管任务没有那么多数据。
  4. 迁移学习什么时候是有意义的?它确实可以显著提高你的学习任务的性能,但我有时候也见过有些场合使用迁移学习时,任务实际上数据量比任务要少,这种情况下增益可能不多。

什么情况下可以使用迁移学习?

假如两个领域之间的区别特别的大,不可以直接采用迁移学习,因为在这种情况下效果不是很好。在这种情况下,推荐使用[3]的工作,在两个自相似度很低的domain之间一步步迁移过去(踩着石头过河)。

  1. 迁移学习主要解决方案有哪些?
  2. 除直接看infer的结果的Accurancy以外,如何衡量迁移学习学习效果?
  3. 对抗网络是如何进行迁移的?

Reference:

  1. 王晋东,迁移学习简明手册
  2. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. W. (2010). A theory of learning from different domains. Machine learning, 79(1-2), 151-175.
  3. Tan, B., Song, Y., Zhong, E. and Yang, Q., 2015, August. Transitive transfer learning. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1155-1164). ACM.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/704004.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

NLP入门——数据预处理:子词切分及应用

BPE(Byte-Pair Encoding)算法 【西湖大学 张岳老师|自然语言处理在线课程 第十六章 - 4节】BPE(Byte-Pair Encoding)编码 如果有一个字符串aabaadaab,对其执行BPE算法 因为字符对aa出现频率最高,因此将其替换为码Z&…

Shell环境下的脚本编程与应用

Shell是什么? Shell 是一个命令行解释器,它接收用户输入的命令(如 ls、cd、mkdir 等),然后执行这些命令。Shell 同时还是一种功能强大的编程语言,允许用户编写由 shell 命令组成的脚本(script&…

vivado HW_SIO_RX

HW_SIO_RX 描述 在硬件设备上,每个GT包括一个独立的接收器hw_sio_rx 由一个PCS和一个PMA组成。高速串行数据从板上的迹线流入 GTX/GTH收发器RX的PMA,进入PCS,最后进入FPGA逻辑。 相关对象 HW_SIO_RX对象与HW_server、HW_target、HW_device、H…

第20篇 Intel FPGA Monitor Program的使用<三>

Q:如何用Intel FPGA Monitor Program创建汇编语言工程呢? A:我们用一个Nios II汇编语言简易应用程序来发掘Intel Monitor FPGA Program软件的一些功能特性,并介绍创建工程的基本步骤。该程序可以实现找到存储在存储器中的32位整…

Electron+Vue开源软件:洛雪音乐助手V2.8畅享海量免费歌曲

洛雪音乐助手是一款功能全面且完全免费的开源音乐软件,支持在Windows、Android和iOS平台上使用。 平台支持: 桌面版:采用Electron Vue技术栈开发,支持Windows 7及以上版本、Mac OS和Linux,具有广泛的用户群体覆盖。 …

opencv roi改进版

点击鼠标左键开始画roi,右键或者回车代表画框完毕 并且做了封装。 import cv2 import numpy as npclass ROIDrawer:def __init__(self, image_path):self.drawing = Falseself.ix, self.iy = -1, -1self.roi = Noneself.image_o = cv2.imread(image_path)self.image = self.…

LeetCode | 21.合并两个有序链表

这道题也是很经典的一道题了,408的算法题中也考过这个思想,因为两个链表已是升序,合并只需要两个指针,分别指向两个表的表头,分别比较两个指针所指向的结点的val,小的就插入到目标链表里面,再后…

火车头采集怎么使用GPT等AI原创文章

火车头采集官方并没有GPT、百度文心一言AI、阿里通义千问AI、Kimi大模型等AI功能,但支持接入插件,可以编写相应人工智能AI原创文章插件(火车头采集支持PHP和c#这2种语言的插件编写),或者导入第三方封装好的GPT等AI原创…

使用PHP对接企业微信审批接口的问题与解决办法(二)

在现代企业中,审批流程是非常重要的一环,它涉及到企业内部各种业务流程的规范和高效运转。而随着企业微信的流行,许多企业希望将审批流程整合到企业微信中,以实现更便捷的审批操作。本文将介绍如何使用PHP对接企业微信审批接口&am…

栈(Stack)汇总

栈简介 栈(Stack)是只允许在一端进行插入或者删除操作的线性表。它的操作特性可以概括为——后进先出(Last In First Out,LIFO)。栈顶(Top)——线性表允许进行插入删除的一端; 栈底…

Springboot(若依)国际化配置接口访问后返回????????

最近使用若依的框架进行二次开发,配置了国际化,application.yml配置英文时没问题,但配置中文basename: i18n/messages_zh_CN,访问接口就直接返回的???,如图: 于是检查了I18nConfig文件,没配错…

读AI未来进行式笔记11丰饶时代与奇点

1. 第四次工业革命 1.1. 在AI轰轰烈烈地拉开第四次工业革命帷幕的同时,一场清洁能源革命也紧锣密鼓地展开 1.1.1. 清洁能源革命好比一场“及时雨”,不但将解决日益加剧的全球气候变化问题,而且会大幅降低全世界的电力成本 1.1.2. 人们将致…

美式动漫效果PS图层样式

对于追求独特艺术风格和创意的摄影师和设计师来说,一款能够轻松将照片转化为卡通效果的Photoshop模板无疑是一个强大的工具。这款由专业团队精心打造的模板,特别注重于美式动漫风格的呈现,让您的照片瞬间拥有生动且充满魅力的动漫色彩。 模板…

AI播客下载:AI在商业中的应用(The AI in Business Podcast)

"AI在商业中的播客"是为那些需要寻找AI机会、将AI能力与战略对齐并实现投资回报的非技术商业领袖准备的。 每周,Emerj人工智能研究公司的首席执行官Daniel Faggella会采访来自财富500强公司和独角兽初创公司的顶级AI高管,以揭示趋势、用例和最…

ISO 26262《道路车辆功能安全》

ISO 26262是关于道路车辆功能安全的国际标准,专门针对总重不超过3.5吨的八座乘用车及其安全相关电子电气系统(E/E系统)的功能安全而制定。以下是关于ISO 26262的详细解释: 一、背景与目的 ISO 26262是在2011年11月15日正式发布的…

Android Studio项目升级报错:Namespace not specified

原项目升级AGP到8.0时报错: Namespace not specified. Specify a namespace in the modules build file: C:\Users\Administrator\Desktop\MyJetpack\app\build.gradle. See https://d.android.com/r/tools/upgrade-assistant/set-namespace for information about…

鸿蒙轻内核A核源码分析系列五 虚实映射(6)虚拟映射修改转移

6.1 映射属性修改函数LOS_ArchMmuChangeProt 函数LOS_ArchMmuChangeProt用于修改进程空间虚拟地址区间的映射保护属性,其中参数archMmu为进程空间的MMU结构体,vaddr为虚拟地址,count为映射的页数,flags为映射使用的新标签属性信息…

kafka 快速上手

下载 Apache Kafka 演示window 安装 编写启动脚本,脚本的路径根据自己实际的来 启动说明 先启动zookeeper后启动kafka,关闭是先关kafka,然后关闭zookeeper 巧记: 铲屎官(zookeeper)总是第一个到,最后一个走 启动zookeeper call bi…

论文阅读ReLU-KAN和Wav-KAN

这是我读KAN系列论文的第三篇,今天把两篇论文放在一起写,分别是: ReLU-KAN: https://arxiv.org/abs/2406.02075 Wav-KAN: https://arxiv.org/abs/2405.12832 之所以放在一起,是因为这两篇论文针对KAN的…

用映射对比ab俩个数组 , 并把a的参数传递给b

项目背景 : react ant 需求 : 在项目进行表头设置时,根据aaa中的key和bbb中的name对应 , 并将sort值插入到bbb中 其中 a b 结构如下 具体实现 aaa[ { key: "orderNumber", orderNumber: "工单编号", sort: 1 } ... ]bbb [ { name: "orderNumber…