朴素贝叶斯分类器 #数据挖掘 #Python

朴素贝叶斯分类器是一种基于概率统计的简单但强大的机器学习算法。它假设特征之间是相互独立的(“朴素”),尽管在现实世界中这通常不成立,但在许多情况下这种简化假设仍能提供良好的性能。

  1. 基本原理:朴素贝叶斯分类器利用贝叶斯定理,计算给定输入特征条件下属于某个类别的概率,并选择具有最高概率的那个类别作为预测结果。
  2. 计算公式:对于特征向量 ( x ) 和类别 ( C ),朴素贝叶斯估计为 ( P(C|X) = \frac{P(X|C) * P©}{P(X)} ),其中 ( P(X|C) ) 是在类别 ( C ) 下特征出现的概率,( P© ) 是类别出现的概率,而 ( P(X) ) 是特征集的整体概率,通常用先验知识或训练数据估计。

它的优点包括:

  1. 计算效率高:由于其"朴素"假设(即特征之间相互独立),在训练阶段计算每个类别的条件概率相对容易,这使得在大数据集上处理时速度非常快。
  2. 鲁棒性:对于缺失数据处理较为友好,只要数据满足一定的独立性,即使有部分特征缺失,也能给出预测。
  3. 可解释性强:模型基于简单的概率公式,结果易于理解,可以直观地解释某个实例属于哪个类别。
  4. 并行计算友好:分类过程可以很容易地并行化,适合分布式系统。
  5. 对新数据适应性强:一旦训练完成,新的观测值可以快速分类,没有存储和计算所有历史数据的限制。
  6. 对小样本数据有效:即使样本量不大,朴素贝叶斯分类器也能提供不错的结果,特别适用于文本分类和垃圾邮件过滤等任务。

在数据分析中,类别属性(也称为分类变量或名义变量)是表示非数值的数据,如性别、颜色、职业等。对这些类别属性进行编码是为了将它们转换为数值形式,以便计算机能够理解和处理。这种编码过程有以下几个重要作用:

  1. 数值化处理:许多机器学习和统计分析算法(如线性回归、决策树等)期望输入是数值型的。类别编码使算法可以对不同类别赋予一个连续的数值,便于计算。
  2. 模型训练:编码后的类别数据可以作为输入特征,让模型学习不同类别之间的关系,有助于提高预测的准确性和模型的解释性。
  3. 减少偏差:有些编码方法(如独热编码)可以防止模型过度拟合某个特定的类别顺序,确保模型对数据的处理更加公平。
  4. 可比较性:编码使得不同类别之间的大小或重要性可以被量化,方便进行比较和排序。

常见的类别编码方法包括:

  • 标签编码(Label Encoding):为每个类别分配一个唯一的整数。
  • 独热编码(One-Hot Encoding):创建一个新的二进制特征列,对每个类别设置一个列,其余为0。
  • 有序编码(Ordinal Encoding):当类别有明确的等级关系时,给类别赋值基于其顺序。
  • 二进制编码(Binary Encoding):用二进制数字表示类别,但这种方法可能增加模型复杂度。

1、读取数据

#导入数据
import pandas as pd
data = pd.read_excel('mushrooms.xls')

导入数据概述:

2、将各属性值进行编号

#将各属性值进行编号
columns = data.columns[1:]
for i in columns:
    data[i] = pd.factorize(data[i])[0]
#将 类型 转化为0,1
from sklearn.preprocessing  import LabelEncoder
le = LabelEncoder()
label = le.fit_transform(data['类型'])
data['类型'] = label

 对属性编号:(局部数据)

将类型转换为01:(局部数据)

3、划分数据集、训练集

#划分数据集、训练集
from sklearn import model_selection
x_train, x_test, y_train, y_test = model_selection.train_test_split(data[columns], data['类型'],test_size=0.3,random_state=1)

 

4、训练模型

#训练模型
from sklearn.naive_bayes import MultinomialNB
mnb = MultinomialNB()
mnb.fit(x_train,y_train)
mnb_pred = mnb.predict(x_test)

 训练的划分结果(部分):

5、输出混淆矩阵

#混淆矩阵
cm = pd.crosstab(mnb_pred, y_test)

 

6、输出模型准确率;精确度、召回率和F1分数等信息

#输出模型准确率;精确度、召回率和F1分数等信息
from sklearn import metrics
print('模型的准确率为:',metrics.accuracy_score(y_test, mnb_pred))
print('模型评估报告\n',metrics.classification_report(y_test, mnb_pred))

 

7、计算AUC得分

#预测概率
y_predict_proba = mnb.predict_proba(x_test)
#返回值是一个元组,分别是,精准率,召回率,阈值
from sklearn.metrics import roc_curve
fpr, tpr, thretholds = roc_curve(y_test, y_predict_proba[:,1])
#计算AUC得分
from sklearn.metrics import auc
AUC = auc(fpr,tpr)

 

8、绘制ROC图

#绘制ROC图
import matplotlib
import matplotlib.pyplot as plt
matplotlib.rc('axes', facecolor = 'white')
matplotlib.rc('figure', figsize = (6, 4))
matplotlib.rc('axes', grid = False)
plt.plot(fpr,tpr,'*:r')
plt.title('ROC plot')
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.savefig('ROC plot.png')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/703077.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[CUDA 学习笔记] 稀疏矩阵向量乘法(SpMV) CUDA 实现与优化

稀疏矩阵向量乘法(SpMV) CUDA 实现与优化 本文主要围绕基于 CUDA 的 SpMV 实现进行介绍, 包括几种典型稀疏矩阵存储格式下 SpMV 的朴素实现, 以及 CSR 格式下的几种优化实现. 稀疏矩阵存储格式 稀疏矩阵即含有大量零元的矩阵. 对于稀疏矩阵, 像稠密矩阵一样使用二维数组来存…

Python学习打卡:day04

day4 笔记来源于:黑马程序员python教程,8天python从入门到精通,学python看这套就够了 目录 day428、while 循环的嵌套应用29、while 循环案例 — 九九乘法表补充知识示例:九九乘法表 30、for 循环基本语法while 和 for 循环对比f…

Java SE LTS版本商用收费,有那些开源的替代方案?

🚀 Java SE LTS版本商用收费,有那些开源的替代方案? 摘要 Java 对于云服务、大数据、电子商务、支付、欺诈和身份、交易等许多应用程序来说都是至关重要的语言。然而,Oracle 对 Java SE LTS 版本的商用收费政策引发了广泛关注和…

免费学习通刷课(免费高分)Pro版

文章目录 概要整体架构流程小结 概要 关于上一版的免费高分的学习通刷课,有很多人觉得还得登录太复杂了,然后我又发现了个神脚本,操作简单,可以后台挂着,但是还是建议调整速度到2倍速,然后找到你该刷的课&…

⌈ 传知代码 ⌋ ERA-CoT: 实体关系推理

💛前情提要💛 本文是传知代码平台中的相关前沿知识与技术的分享~ 接下来我们即将进入一个全新的空间,对技术有一个全新的视角~ 本文所涉及所有资源均在传知代码平台可获取 以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦&#x…

LLVM Cpu0 新后端8 尾调用优化 Stack Overflow Exception异常

想好好熟悉一下llvm开发一个新后端都要干什么,于是参考了老师的系列文章: LLVM 后端实践笔记 代码在这里(还没来得及准备,先用网盘暂存一下): 链接: https://pan.baidu.com/s/1yLAtXs9XwtyEzYSlDCSlqw?…

推荐这两款AI工具,真的很好用

巨日禄 巨日禄是一款由杭州巨日禄科技有限公司开发的AI工具,主要功能是将文本内容转换为视频。该工具通过分析大量的剧本数据和影视作品,为用户提供各种类型的故事情节和角色设置,帮助用户快速找到灵感,减少构思剧本的困难和犹豫。…

服务器通的远程桌面连接不上,服务器通的远程桌面连接不上解决方法

当面临服务器远程桌面连接不上的问题时,专业的处理方式需要遵循一系列步骤来确保问题得到准确且高效的解决。以下是一些建议的解决方法: 一、初步排查与诊断 1. 检查网络连接: - 确保本地计算机与服务器之间的网络连接是稳定的。 - 尝…

鸿蒙开发:【线程模型】

线程模型 线程类型 Stage模型下的线程主要有如下三类: 主线程 执行UI绘制。管理主线程的ArkTS引擎实例,使多个UIAbility组件能够运行在其之上。管理其他线程的ArkTS引擎实例,例如使用TaskPool(任务池)创建任务或取消…

ESP RainMaker®为企业提供AIoT云解决方案,启明云端乐鑫代理商

在AIoT的浪潮中,企业面临着前所未有的机遇与挑战。如何快速响应市场变化,开发出具有竞争力的智能产品?如何确保数据安全,同时实现高效的设备管理?这些问题,ESP RainMaker给出了答案。 ESP RainMaker是一个…

数据价值管理-数据验收标准

前情提要:数据价值管理是指通过一系列管理策略和技术手段,帮助企业把庞大的、无序的、低价值的数据资源转变为高价值密度的数据资产的过程,即数据治理和价值变现。第一讲介绍了业务架构设计的基本逻辑和思路。前面我们讲完了数据资产建设标准…

0604 集成电路运算放大器

6.4.1 集成电路运算放大器CMOS MC14573 6.4.2 集成运算放大器741

Day 19:419. 甲板上的战舰

Leetcode 419. 甲板上的战舰 给你一个大小为 m x n 的矩阵 board 表示甲板,其中,每个单元格可以是一艘战舰 ‘X’ 或者是一个空位 ‘.’ ,返回在甲板 board 上放置的 战舰 的数量。 战舰 只能水平或者垂直放置在 board 上。换句话说&#xff…

UV胶开裂主要因素有哪些?如何避免?

UV胶开裂主要因素有哪些?如何避免? UV胶开裂的原因可能包括多个方面: 固化不足:UV胶的固化需要足够的紫外线照射。如果照射时间不够,或者紫外线光源的强度不足,胶水可能没有完全固化,从而导致开…

Xmind导入纯文本TXT方法

最近有很多同事咨询我如何在xmind直接导入纯文本txt笔记或者思维导图呢? 解决办法如下: 1.先打开xmind随便打开一个思维导图-文件-导出-marldown 2.选中导出的markdown文件。右键-打开方式-苹果系统选择文本编辑,Win系统选择记事本 3.按照图示…

【数据结构】二叉树:一场关于节点与遍历的艺术之旅

专栏引入 哈喽大家好,我是野生的编程萌新,首先感谢大家的观看。数据结构的学习者大多有这样的想法:数据结构很重要,一定要学好,但数据结构比较抽象,有些算法理解起来很困难,学的很累。我想让大家…

初级网络工程师之从入门到入狱(三)

本文是我在学习过程中记录学习的点点滴滴,目的是为了学完之后巩固一下顺便也和大家分享一下,日后忘记了也可以方便快速的复习。 中小型网络系统综合实战实验 前言一、详细拓扑图二、LSW2交换机三、LSW3交换机四、LSW1三层交换机4.1、4.2、4.3、4.4、4.5、…

鸿蒙开发文件管理:【@ohos.statfs (statfs)】

statfs 该模块提供文件系统相关存储信息的功能,向应用程序提供获取文件系统总字节数、空闲字节数的JS接口。 说明: 本模块首批接口从API version 8开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。 导入模块 import stat…

2024 全球软件研发技术大会官宣,50+专家共话软件智能新范式!

2024年的全球软件研发技术大会(SDCon)由CSDN和高端IT咨询与教育平台Boolan联合主办,将于7月4日至5日在北京威斯汀酒店举行。本次大会的主题为“大模型驱动软件智能化新范式”,旨在探讨大模型和开源技术的发展如何引领全球软件研发…

GoogleDeepMind联合发布医学领域大语言模型论文技术讲解

Towards Expert-Level Medical Question Answering with Large Language Mod 这是一篇由Google Research和DeepMind合作发表的论文,题为"Towards Expert-Level Medical Question Answering with Large Language Models"。 我先整体介绍下这篇论文的主要内容&#x…