Explorable Tone Mapping Operators

Abstract

色调映射在高动态范围(HDR)成像中起着至关重要的作用。 它的目的是在有限动态范围的介质中保存HDR图像的视觉信息。 虽然许多工作已经提出从HDR图像中提供色调映射结果,但大多数只能以一种预先设计的方式进行色调映射。 然而,声调映射质量的主观性因人而异,声调映射风格的偏好也因应用而异。 本文提出了一种基于学习的多模态色调映射方法,该方法不仅获得了良好的视觉质量,而且探索了风格的多样性。 该方法基于Byclegan[1]的框架,通过操纵不同的潜在码,可以提供多种专家级的声调映射结果。 最后,我们证明了所提出的方法在定性和定量上都优于现有的音调映射算法。

I. INTRODUCTION

在现实世界中,自然场景的动态范围(DR)往往太宽(DR>10^7),相机无法捕捉,尤其是对太阳等直射光源。 由于多曝光融合技术[2]的发展,我们可以将不同曝光的图像中的所有细节融合到一张高动态范围(HDR)图像中。

HDR图像包含丰富的视觉信息,需要较高的位深度来存储大动态范围的数据。 然而,大多数显示设备只能显示低动态范围的图像(LDR,通常存储在8位)。 然后提出了色调映射算法,将HDR图像压缩为LDR图像,同时尽量保留感知内容。

在过去的二十年里,人们提出了一系列的音调映射算法[3]、[4]、[5]、[6]。 其中许多方法将HDR图像分解为两个部分:一个是经过平滑处理但仍保持原始全局动态范围的基本层,另一个是仅具有局部边缘或细节信息的细节层。 在将基础层和细节层融合回LDR图像之前,基础层通常被压缩以减小动态范围,而细节层被增强或提升以保留更好的视觉内容。

该方案将HDR图像中的低频信息和高频信息分开处理,在保持LDR图像局部细节的同时,大大压缩了图像的动态范围。 因此,将HDR图像分解为基础层和细节层对色调映射方法的质量有很大影响,而分解的方式几乎构成了不同方法之间的主要区别。

至于细节增强,一些方法试图使黑暗物体周围的区域变亮,从而导致光晕伪影[3]。 另外一些方法过分强调边缘信息,从而产生不切实际的过增强结果[7]。 虽然有一些方法可以解决这些问题,但它们通常只在特定类型的图像上有效,并且需要大量的参数调整才能获得最佳的结果[4]。 这个调优过程通常很耗时,而且很难重现。

最近还提出了基于深度学习的声调映射方法。 它们通常被建模为图像到图像的翻译任务。 杨等人[8]使用自动编码器架构将HDR图像转换为LDR图像。 然而,像不真实的颜色和对比度这样的伪影可以在他们的结果中看到。 拉纳等人[9]使用多尺度CGAN架构。 但是,当测试图像的尺度与训练图像不同时,仍然存在光环伪影,并可能导致其他伪影。 此外,上述基于深度学习的声调映射方法都是一对一映射,提供的主观风格较少。

本文提出了一种基于学习的多模态声调映射方法。 该方法可分为两个部分。 一个是EdgePreservingNet,它输出局部变化的内核,用于将输入的HDR图像分解为基础层和细节层。 另一个是预测全局音调压缩曲线的ToneCompressingNet。 两者都根据输入HDR图像的内容和动态范围自适应动态运行。

该方法以最小的伪影获得了良好的质量,在客观和主观上都优于现有的调音算法。 此外,由于Bicclegan[1]的体系结构,我们的方法可以从单个HDR图像中产生多样化的视觉吸引力的tonemapped结果。

我们的主要贡献总结如下:

1)提出了一种基于深度学习的音调映射方法,该方法由一个边缘保留网和一个ToneCompressingNet组成。

2)通过整合bicclegan体系结构,本文提出的方法能够从单个HDR图像中生成不同的色调映射结果。

3)利用双边滤波器,在保持HDR图像高频信息的同时压缩了动态范围的大部分。

4)与现有方法相比,该方法的主观评价和客观评价均较好。

II. RELATED WORK

A. Tone mapping

在过去的二十年里,人们提出了许多声调映射算法。 根据算法的工作方式,它们可以大致分为全局方法和局部方法。 全局色调映射方法在HDR图像的每个像素上使用单一的色调映射曲线[10],[11],这往往会造成对比度和细节信息的损失。 相比之下,局部音调映射方法利用空间特性自适应地执行此任务[12]。 全局方法需要更少的计算时间,而局部方法生成更好的细节。 局部方法通常将图像分解为两个部分:平滑的基础层和细节层[13]。 在局部方法中,晕影通常发生在边缘周围。 局部色调映射算法主要是为了减少这些伪影而提出的。 Durand和Dorsey在[3]中提出了使用边缘保持的双边滤波器来进行色调映射,但是在一些图像中仍然存在晕影。 曼蒂克等人[7]提出了对比处理框架,但细节被过度增强。 法布曼等人[14]提出了一种使用加权最小二乘滤波器的多尺度方案。 梁等人[6]提出了混合L1-L0分解模型。

虽然前人的工作取得了很好的效果,但对于不同的图像,通常需要进行超参数调整以达到最佳的视觉质量和减少晕影伪影。 近年来,基于深度学习的方法被提出,不需要参数调整,利用强大的GPU大大缩短了计算时间。 帕特尔等人[15]使用生成对抗网络(GAN)[16]来执行音调映射。 但问题过于简单化,只能在256×256的小块上进行测试。 杨等人[8]应用带有跳过连接的自动编码器网络将HDR图像传输到LDR空间。 然而,它们未能在一般HDR图像上产生良好的结果。 拉纳等人[9]使用条件生成对抗网络(CGAN)[17]和多尺度方案对图像进行色调映射。 虽然结果获得了很高的TMQI[18]分数,但结果包含光环伪影。 在这项工作中,我们采用BycleGan[1]来允许我们的模型生成多个高质量的色调映射图像。 分解方案使我们的模型能够产生没有晕轮效应的有吸引力的结果。

B. Multimodal image-to-image translation

模式崩溃是CGAN[17]中的一个著名问题。 鲍等人[19]提出了CVAE-GAN,它将变分自动编码器与生成对抗网络相结合,生成现实和不同的结果。 朱等人[1]将CVAE-GaN和CLR-GaN[20]、[21]、[22]组合成双环算法,使编码器产生的潜在码具有可逆性,并显示出更好的性能。 杨等人[23]在生成器中提出了一个新的正则化项来解决这种模式崩溃问题。

III. METHOD

A. Learning-based Bilateral Filters

双边滤波[3]是最常见的调音算子之一。 该算子的核心思想是将HDR图像分解为基础层和细节层,分别代表HDR图像的大部分动态范围和高频信息。 然而,基础层和细节层通常是通过一些手工制作的边缘保持过滤器和压缩操作来分解的。 由于参数量大,调优这些过滤器和操作通常是困难和耗时的。

代替手工制作的过滤器和操作,我们提出了一个基于学习的方案,如图所示 2. 该方案包括两个网络:(a)EdgePreservingNet和(b)ToneCompressingNet。 为了避免伪影,我们将EdgePreservingNet设为核预测网络(KPN)[24]。 因此,给定输入的HDR图像在对数域,EdgePreservingNet生成卷积核来生成基图像。 接下来,通过从输入HDR图像中减去基本图像来获取细节图像。 为了提高图像的视觉质量,我们对细节图像进行了增强处理。 然后使用ToneCompressingNet(典型的Conv-FC网络)预测的全局色调曲线对基图像进行压缩。 最后,将压缩后的基础图像和增强后的细节图像相加,并进行后处理和颜色校正,得到输出的LDR图像。 图 3展示了一个分解图像的例子。

EdgePreservingNet和ToneCompressingNet是使用BycleGan框架联合训练的,这将在第三-C节中描述。 值得一提的是,在训练过程中向这些网络中输入各种随机潜在码Z,使它们能够生成各种LDR图像。 此外,在第III-D节将介绍一个潜在代码优化方案,以帮助用户找到合适的潜在代码。

B. Tone Mapping Operators

我们将U-Net[25]体系结构应用于EdgePreservingNet,它由一个带有跳过连接的编码器-解码器组成。 正如Gu等人所建议的那样[12]中,输入的HDR图像首先被变换到对数域,然后归一化到[0,1]以适应人类的感知。 EdgePreservingNet不是直接生成基图像,而是预测一个大小为h×w×k^2的像素级滤波器,其中k是核大小,h,w是图像的高度和宽度。 然后对每个像素WP处的预测核进行归一化

 

其中I被称为WP的每个元素。 图 4表明这种归一化对色调映射的性能至关重要。

因此,通过在对数域中对输入HDR图像IHDR应用卷积来给出基图像IBASE

 其中1p表示像素p的值为1,否则为0。 然后通过idetail=ihdr-ibase获得细节图像。

 

 ToneCompressingNet由一系列连续的卷积层和一些完全连接的层组成。该网络可以预测压缩速率γ基以及后处理γ后的程度。压缩后的基本图像由

 

 

 D. Latent Code Optimization

回忆一下,色调映射是一个主观的任务,也就是说,人们喜欢不同类型或风格的色调映射图像。虽然我们的方法允许用户通过调整潜码来改变样式,但是由于搜索空间非常大,要找到合适的样式仍然是一个很大的挑战。在测试阶段,我们提出了一种优化音调映射的代表性评估指标TMQI[18]的方案,以帮助用户过滤掉不合适的潜在码,而不是使用随机潜码。给定一个训练良好的音调映射算子,该算子具有固定的模型参数和初始潜码,然后使用Adam[30]优化器通过反向传播迭代优化潜码。一般来说,这个过程通过大约30次迭代收敛。在该方案中,用户只需从少数候选码中选择潜在码即可。请注意,TMQI和我们的模型都是可微的。

V. CONCLUSIONS

提出了一种新的基于深度学习的调音方法。 该方法在定性和定量上均优于现有的传统方法和基于学习的方法。 我们还提供了一个用户研究,使实验结果更有说服力。 此外,通过调整潜在代码,该方法可以产生多种专家级的音调映射结果。

至于未来的工作,使潜在的代码更易于解释和调整可能是一个可能的方向。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/70306.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构功法】第八话 · 树与二叉树的基本概念

目录 🍺知识点9:树的概念与性质 🍯9.1 树的逻辑结构与性质 🍊1.树的逻辑结构 🍊2.树的相关术语 🍊3.树的性质 📜习题检测 🍯9.2 二叉树的的定义与性质 🍊1.二叉树…

js 面试题总结

js 面试题总结 文章目录 js 面试题总结近百道面试题1、实现 子元素 在父元素中垂直居中的方式2、实现 子元素 在父元素中水平 垂直居中的方式3、描述 Keepealive 的作用,有哪些钩子函数,如何控制组件级存列表?4、请写出判断对象是数组的三个方法5、请说…

RAM不够?CUBEIDE使用CCMRAM

RAM不够?使用CCMRAM 文章目录 RAM不够?使用CCMRAM打开连接LD文件:添加代码添加标识宏使用 打开连接LD文件: 添加代码 在SECTIONS段最后加上下面代码: _siccmram LOADADDR(.ccmram); /* CCM-RAM section * * IMPORTAN…

【雕爷学编程】Arduino动手做(13)---TTP223B电容式触摸按键模块之点动型篮板、AB款红板、AT款篮板与带背光板锁存款

37款传感器与模块的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的&#x…

快速获得图像中像素值的小工具

之前项目中为了做lka中获得rgb图像信息,网上大多方案是确定相关的区域然后输出像素值,这个方法太麻烦,做了一个简单的使用鼠标点击图片某区域,然后直接在终端输出该区域的像素值。下面是源码: import cv2 import matp…

VARIATIONAL IMAGE COMPRESSION WITH A SCALE HYPERPRIOR

文章目录 VARIATIONAL IMAGE COMPRESSION WITH A SCALE HYPERPRIORABSTRACT1 INTRODUCTION2 COMPRESSION WITH VARIATIONAL MODELS3 INTRODUCTION OF A SCALE HYPERPRIOR 个人总结动机流程思路 VARIATIONAL IMAGE COMPRESSION WITH A SCALE HYPERPRIOR ABSTRACT We describe …

UE中低延时播放RTSP监控视频解决方案

第1章 方案简介 1.1 行业痛点 在各种智慧城市、智慧社区、智慧水利、智慧矿山等数字孪生项目中,经常使用通UE来开发三维可视化场景。在这些场景中通常都需要把现场的各种监控视频在UE的可视化场景中接入,主要包含海康威视、大华、宇视、华为等众多监控…

分类过程中的一种遮挡现象

( A, B )---3*30*2---( 1, 0 )( 0, 1 ) 让网络的输入只有3个节点,AB训练集各由6张二值化的图片组成,让A,B中各有3个点,且不重合,统计迭代次数并排序。 其中有10组数据 差值结构 迭代次数 构造平均列A 构造平均列AB…

React Native 样式布局基础知识

通过此篇笔记能够学习到如下的几个知识点 在 React Native 中使用样式的一些细节了解 React Native 的 Flex 布局概念了解 React Native 的 flex 布局属性React Native 如何添加多样式属性React Native 中绝对布局和相对布局 React Native 中的 Flex 布局概念 1、主轴和交叉…

蜜蜂路线 P2437

蜜蜂路线 题目背景 无 题目描述 一只蜜蜂在下图所示的数字蜂房上爬动,已知它只能从标号小的蜂房爬到标号大的相邻蜂房,现在问你&#xff1a;蜜蜂从蜂房 m 开始爬到蜂房 n&#xff0c;m<n&#xff0c;有多少种爬行路线&#xff1f;&#xff08;备注&#xff1a;题面有误&…

插入、希尔、归并、快速排序(java实现)

目录 插入排序 希尔排序 归并排序 快速排序 插入排序 排序原理&#xff1a; 1.把所有元素分为两组&#xff0c;第一组是有序已经排好的&#xff0c;第二组是乱序未排序。 2.将未排序一组的第一个元素作为插入元素&#xff0c;倒序与有序组比较。 3.在有序组中找到比插入…

Map中compute、putIfAbsent、computeIfAbsent、merge、computeIfPresent使用

目录 putIfAbsent computeIfAbsent computeIfPresent compute merge putIfAbsent 解释&#xff1a;【不存在则添加】&#xff0c;如果map中没有该key&#xff0c;则直接添加&#xff1b;如果map中已经存在该key&#xff0c;则value保持不变 default V putIfAbsent(K key,…

Vue3 第四节 自定义hook函数以及组合式API

1.自定义hook函数 2.toRef和toRefs 3.shallowRef和shallowReactive 4.readonly和shallowReadonly 5.toRaw和markRaw 6.customref 一.自定义hook函数 ① 本质是一个函数&#xff0c;把setup函数中使用的Composition API 进行了封装,类似于vue2.x中的mixin 自定义hook函数…

从MySQL到金蝶云星空通过接口配置打通数据

从MySQL到金蝶云星空通过接口配置打通数据 对接系统&#xff1a;MySQL MySQL是一个关系型数据库管理系统&#xff0c;由瑞典MySQLAB公司开发&#xff0c;属于Oracle旗下产品。MySQL是最流行的关系型数据库管理系统之一&#xff0c;在WEB应用方面&#xff0c;MySQL是最好的RDBMS…

HCIP 链路聚合技术

1、链路聚合概述 为了保证网络的稳定性&#xff0c;仅仅是设备进行备份还不够&#xff0c;我们需要针对我们的链路进行备份&#xff0c;同时也增加了链路的利用率&#xff0c;提高带宽。避免一条链路出现故障&#xff0c;导致网络无法正常通信。这就可以使用链路聚合技术。 以…

Uniapp使用腾讯地图并进行标点创建和设置保姆教程

使用Uniapp内置地图 首先我们需要创建一个uniapp项目 首先我们需要创建一个uniapp项目 我们在HBuilder左上角点击文件新建创建一个项目 然后下面这张图的话就是uniapp创建项目过程当中需要注意的一些点和具体的操作 然后我们创建完项目之后进入到项目pages文件夹下&#xff…

AP51656 电流采样降压恒流驱动IC RGB PWM深度调光 LED电源驱动

产品描述 AP51656是一款连续电感电流导通模式的降压恒流源&#xff0c;用于驱动一颗或多颗串联LED 输入电压范围从 5 V 到 60V&#xff0c;输出电流 可达 1.5A 。根据不同的输入电压和 外部器件&#xff0c; 可以驱动高达数十瓦的 LED。 内置功率开关&#xff0c;采用电流采样…

Redis——常见数据结构与单线程模型

Redis中的数据结构 Redis中所有的数据都是基于key&#xff0c;value实现的&#xff0c;这里的数据结构指的是value有不同的类型。 当前版本Redis支持10种数据类型&#xff0c;下面介绍常用的五种数据类型 底层编码 Redis在实现上述数据结构时&#xff0c;会在源码有特定的…

成像镜头均匀性校正——360°超广角均匀校准光源

随着空间技术的不断发展&#xff0c;遥感仪器在对地观测、大气探测及海洋探测等方面的应用也不断拓展&#xff0c;以实现不同任务的观测精度。空间遥感仪器热控技术旨在保证遥感器各部件所需温度水平、温度梯度和温度稳定度&#xff0c;以满足遥感器高质量成像要求。 近年来我国…

动手学DL——MLP多层感知机【深度学习】【PyTorch】

文章目录 4、多层感知机&#xff08; MLP&#xff09;4.1、多层感知机4.1.1、隐层4.1.2、激活函数 σ 4.2、从零实现多层感知机4.3、简单实现多层感知机4.4、模型选择、欠拟合、过拟合4.5、权重衰退4.6、丢失法|暂退法&#xff08;Dropout&#xff09;4.6.1、dropout 函数实现4…