Python实战之使用Python进行数据挖掘详解

640?wx_fmt=png&wxfrom=13&tp=wxpic


一、Python数据挖掘

1.1 数据挖掘是什么?

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,通过算法,找出其中的规律、知识、信息的过程。Python作为一门广泛应用的编程语言,拥有丰富的数据挖掘库,使得数据挖掘变得更加容易。

1.2 Python的优势

为什么我们要选择Python来进行数据挖掘呢?以下几点原因可能解答你的疑惑:

  • 语法简洁,易学易用

  • 丰富的数据挖掘库和工具

  • 跨平台性,可在多种操作系统中运行

  • 社区活跃,庞大的用户基础

二、Python数据挖掘的基本流程📚

接下来,我们将通过一个实际案例来揭示Python数据挖掘的基本流程。假设我们手头有一份销售数据,需要分析哪些产品最受欢迎,以便调整经营策略。

2.1 数据收集

首先,我们需要从各个渠道收集销售数据。在这个案例中,我们可以从数据库、API接口、Web爬虫等途径获取数据。这里我们使用pandas库来读取一个CSV文件中的数据。

import pandas as pd

# 读取CSV文件
data = pd.read_csv("sales_data.csv")

文件内容形如:

日期,产品,销售额,销售量
2022-01-01,产品A,1000,10
2022-01-02,产品B,2000,20
2022-01-03,产品C,3000,30
2022-01-04,产品A,4000,40
2022-01-05,产品B,5000,50
2022-01-06,产品D,6000,60
2022-01-07,产品A,7000,70
2022-01-08,产品C,8000,80
2022-01-09,产品B,9000,90
2022-01-10,产品A,10000,100

2.2 数据预处理

收集到的数据很可能存在缺失值、重复值、异常值等问题,需要进行预处理。这里我们用pandas进行数据清洗。

# 去除重复值
data = data.drop_duplicates()

# 填补缺失值
data = data.fillna(method="ffill")

# 查找异常值并处理
data = data[data["销售额"] > 0]

2.3 数据分析

我们要根据业务需求进行数据分析。例如,我们可以分析不同产品的销售额、销售量等。这里我们使用pandas和matplotlib库进行数据分析和可视化。

import matplotlib.pyplot as plt

# 按产品统计销售额
product_sales = data.groupby("产品")["销售额"].sum()

# 绘制柱状图
plt.bar(product_sales.index, product_sales.values)
plt.xlabel("产品")
plt.ylabel("销售额")
plt.title("各产品销售额统计")
plt.show()

2.4 结果呈现

最后,我们将分析结果以表格、图表等形式呈现给决策者。这里我们使用pandas和matplotlib生成一个销售额排名的表格和柱状图。

# 排序
product_sales = product_sales.sort_values(ascending=False)

# 输出销售额排名
print(product_sales)

# 绘制柱状图
plt.bar(product_sales.index, product_sales.values)
plt.xlabel("产品")
plt.ylabel("销售额")
plt.title("各产品销售额排名")
plt.show()

三、Python数据挖掘实战:豆瓣电影评分分析🎬

3.1 项目背景

假如我们是一家电影制作公司,想要了解近年来观众喜欢的电影类型和特点,以便制定新电影的发展策略。我们将通过分析豆瓣电影评分数据,提取有价值的信息。

3.2 数据获取

我们使用Python的requests库和BeautifulSoup库爬取豆瓣电影榜单页面,抓取电影名称、类型、评分等信息。

import requests
from bs4 import BeautifulSoup

url = "https://movie.douban.com/top250"
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')

movie_list = []
for item in soup.find_all('div', class_='item'):
    title = item.find('span', class_='title').text
    genres = item.find('span', class_='genre').text.strip()
    rating = float(item.find('span', class_='rating_num').text)
    movie_list.append({'title': title, 'genres': genres, 'rating': rating})

movies_df = pd.DataFrame(movie_list)

3.3 数据预处理

这里我们需要对数据进行简单的预处理,例如拆分电影类型字段,使得每个类型单独成列。

# 拆分电影类型字段
genres_df = movies_df['genres'].str.get_dummies(sep='/').add_prefix('genre_')
movies_df = pd.concat([movies_df, genres_df], axis=1)

3.4 数据分析

我们可以分析不同类型电影的平均评分、数量等,找出观众喜欢的电影类型。这里我们使用pandas和matplotlib库进行数据分析和可视化。

# 计算各类型电影的数量
genre_counts = genres_df.sum().sort_values(ascending=False)

# 绘制饼图
plt.pie(genre_counts, labels=genre_counts.index, autopct='%1.1f%%')
plt.title("电影类型比例")
plt.show()

# 计算各类型电影的平均评分
genre_ratings = movies_df.groupby('genres')['rating'].mean().sort_values(ascending=False)

# 绘制柱状图
plt.bar(genre_ratings.index, genre_ratings.values)
plt.xlabel("类型")
plt.ylabel("平均评分")
plt.title("各类型电影平均评分")
plt.xticks(rotation=90)
plt.show()

3.5 结果呈现

根据分析结果,我们可以看出观众喜欢的电影类型,并制定相应的发展策略。例如,选择高评分的类型制作新电影,或者研究具有一定特点的电影,提高影片的吸引力。

四、技术总结

通过上述案例,我们了解了Python在数据挖掘领域的强大能力,探索了如何从海量数据中找到隐藏的价值。希望这篇文章能给你在数据挖掘之路上带来启发。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/70210.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python-OpenCV中的图像处理-颜色空间转换

Python-OpenCV中的图像处理-颜色空间转换 颜色空间转换获取HSV的值 颜色空间转换 在 OpenCV 中有超过 150 中进行颜色空间转换的方法。但是你以后就会 发现我们经常用到的也就两种: BGR G r a y 和 B G R Gray 和 BGR Gray和BGRHSV。 注意:在 OpenCV 的…

C语言实现选择排序

什么是选择排序? 选择排序是一种简单直观的排序算法,它的核心思想是每次从未排序的元素中选择最小(或最大)的元素,然后将其放到已排序序列的末尾。通过重复这个过程,直到所有元素都排好序为止。 选择排序…

计算机网络 网络层 IPv4地址

A类地址第一位固定0 B类10 其下同理

Grafana V10 告警推送 邮件

最近项目建设完成,一个城域网项目,相关zabbix和grafana展示已经完,想了想,不想天天看平台去盯网络监控平台,索性对告警进行分类调整,增加告警的推送,和相关部门的提醒,其他部门看不懂…

PHP利用PCRE回溯次数限制绕过某些安全限制实战案例

目录 一、正则表达式概述 有限状态自动机 匹配输入的过程分别是: DFA(确定性有限状态自动机) NFA(非确定性有限状态自动机) 二、回溯的过程 三、 PHP 的 pcre.backtrack_limit 限制利用 例题一 回溯绕过步骤 &…

山西电力市场日前价格预测【2023-08-13】

日前价格预测 预测明日(2023-08-13)山西电力市场全天平均日前电价为351.64元/MWh。其中,最高日前电价为404.00元/MWh,预计出现在19: 30。最低日前电价为306.39元/MWh,预计出现在13: 15。 价差方向预测 1: 实…

《甲午》观后感——GPT-3.5所写

《甲午》是一部令人深思的纪录片,通过生动的画面和真实的故事,向观众展示了中国历史上的一段重要时期。观看这部纪录片,我深受触动,对历史的认识也得到了深化。 首先,这部纪录片通过精心搜集的历史资料和珍贵的影像资料…

stable-diffusion 模型效果+prompt

摘自个人印象笔记,图不完整可查看原笔记:https://app.yinxiang.com/fx/55cda0c6-2af5-4d66-bd86-85da79c5574ePrompt运用规则及技巧 : 1. https://publicprompts.art/(最适用于OpenArt 线上模型 https://openart.ai/)…

数据库数据恢复-Oracle数据库数据恢复案例

数据库数据恢复环境: Oracle数据库ASM磁盘组有4块成员盘。 数据库故障&分析: Oracle数据库ASM磁盘组掉线 ,ASM实例无法挂载,用户联系我们要求恢复oracle数据库。 数据库数据恢复工程师拿到磁盘后,先将所有磁盘以只…

【深度学习】再谈向量化

前言 向量化是一种思想,不仅体现在可以将任意实体用向量来表示,更为突出的表现了人工智能的发展脉络。向量的演进过程其实都是人工智能向前发展的时代缩影。 1.为什么人工智能需要向量化 电脑如何理解一门语言?电脑的底层是二进制也就是0和1&…

centos7 安装 docker 不能看菜鸟教程的 docker 安装,有坑

特别注意 不能看菜鸟教程的 docker 安装,有坑 如果机器不能直接上网,先配置 yum 代理 proxyhttp://172.16.0.11:8443 配置文件修改后即刻生效,再执行 yum install 等命令,就可以正常安装软件了。 参考 https://blog.csdn.net/c…

RCNA——单臂路由

一,实验背景 之前的VLAN实现的很多都是相同部门互相访问,不同部门无法访问。不过这次整来了一个路由器,领导说大部分的部门虽说有保密信息需要互相隔离,但是这些部门和其它部门也应该互相连通以方便工作交流。因此要配置新的环境&…

【VBA入门】WorkBook 对象 Name操作 宏录制筛选删除代码

VBA 入门 问题记录1 了解Excel工作簿、表格关系1 默认新建WorkBook2 新建WorkBook并命名工作表添加数据3新建带有指定数量工作表的工作簿 ActiveWorkbook.Names用法(1) 创建名称 (全局名称和局部名称) 宏录制验证删除可行性大招!!&#xff01…

【数据结构】反转链表、链表的中间节点、链表的回文结构(单链表OJ题)

正如标题所说,本文会图文详细解析三道单链表OJ题,分别为: 反转链表 (简单) 链表的中间节点 (简单) 链表的回文结构 (较难) 把他们放在一起讲的原因是: 反转链…

Springboot3整合使用aj-captcha行为验证码解决方案

截止到目前(2023-04-20),Springboot最新稳定版本已经迭代到3.0.5,而我们项目中使用的行为验证码框架aj-captcha还没有适配Springboot3,码云上类似的请求也没有得到过回应,于是决定自己动手适配一下,研究下来发现适配3.…

加盐加密算法

MD5加密加盐加密项目密码升级 MD5加密 MD5一系列公式进行复杂数学运算;特点:(用途校验和、计算hash值方式、加密) 1:定长;无论原始数据多长;算出的结果都是4或者8字节的版本。 2:冲…

Nodejs+vue+elementui汽车租赁管理系统_1ma2x

语言 node.js 框架:Express 前端:Vue.js 数据库:mysql 数据库工具:Navicat 开发软件:VScode 前端nodejsvueelementui, 课题主要分为三大模块:即管理员模块、用户模块和普通管理员模块,主要功能包括&#…

【网络编程·网络层】IP协议

目录 一、IP协议的概念 二、IP协议的报头 1、四位首部长度 2、16位总长度(解包) 3、8位协议(分用) 4、16位首部校验和 5、8位生存时间 6、32位源IP和32位目的IP 7、4位版本/8位服务类型 8、16位标识 9、3位标志 10、1…

Element组件浅尝辄止2:Card卡片组件

根据官方说法: 将信息聚合在卡片容器中展示。 1.啥时候使用?When? 既然是信息聚合的容器,那场景就好说了 新建页面时可以用来当做页面容器页面的某一部分,可以用来当做子容器 2.怎样使用?How? //Card …

30.基于XML的声明式事务

基于XML的声明式事务 主要是使用XML去代替注解&#xff0c;来实现起到代替注解的作用&#xff0c;实际使用频率很低 将BookServiceImpl.java中的Transactional注解删除&#xff0c;确保用户余额充足 spring-tx-xml.xml <?xml version"1.0" encoding"UTF-8…