点云分割报告整理(未完成版-每天写一点)

体积占用网格表示对点进行体素化,然后使用3d卷积神经网络来学习体素级语义。由于点云的稀疏性,体素化效率低,为避免较高的计算成本而忽略了细节。此外,由于同一体素内的所有点都被赋予了相同的语义标签,因此精度受到限制。为了利用传统的那些2D分割框架,尝试将3D空间从多角度映射到二维空间,然后分割完成后再投影回去,然而,重新投影回3d空间也是一个重要的问题。

非结构化点云的 3d 语义分割存在的问题:

1.大规模点云数据

2.不规则形状

3.非均匀密度

Pointnet

PointNet是第一个直接处理原始点云的方法。只有全连接层和最大池化层,PointNet网络在推理速度上具有强大的领先优势,并且可以很容易地在CPU上并行化。

困难:

由于点云不是常规数据格式,通常将此类数据转换为规则的 3D 体素网格或图像集合,然后再用神经网络进行处理。数据表示转换使生成的数据过于庞大。

应对点云的无序性有三种方案:

方案1:排序

高维空间的排序,不可稳定

方案2:假如有N个点,N!种排列训练一个RNN。

2015年《Order Matters: Sequence to sequence for sets》证明RNN网络对序列的排序还是有要求的。

方案3:设计对称函数,因为输入顺序对于对称函数没有影响。比如:加法、乘法

PointNet使用的最大池化,是对称函数。

Pointnet的解决方法:

训练一个正交矩阵,将点云对齐

使用单个对称函数 max pooling

限制:

PointNet架构有两个限制将其性能限制在更大、更复杂的点云上。一方面,只集成了点特征和池化的全局特征,无法捕获相邻点所代表的局部结构。另一方面,首先将点云细分为小体积块,每个块都是独立预测的,没有任何连接。因此,点网的整体精度在复杂场景中受到限制。

PointNet++

PointNet 没有捕捉到由现场的度量空间点引起的局部结构,限制了其识别细粒度模式和对复杂场景的泛化能力。

Pointnet可以通过一组稀疏的关键点来总结输入点云,这些关键点大致对应可视化骨架。PointNet 对输入点的小扰动以及点插入(异常值)或删除(缺失数据)损坏具有高度鲁棒性。

点集通常以不同的密度进行采样,这导致在均匀密度上训练的网络的性能大大降低,我们提出了一种新的集合学习层来自适应地组合多个尺度的特征。

为了实现这一目标,提出了密度自适应点网层,当输入采样密度发生变化时,这些点网层可以学习组合来自不同尺度区域的特征。具有密度自适应点网层的分层网络称为pointnet++

PointNet++的设计必须解决两个问题:如何生成点集的划分,以及如何通过局部特征学习器抽象点集或局部特征。

2种方案:

(a)多尺度分组(MSG);(b)多分辨率分组(MRG)

PointSIFT

PointSIFT是在pointnet++的基础上改进的,引入了尺度不变特征变换。

八叉树

八叉树(Octree)的定义:若不为空树的话,树中任一节点的子节点恰好只会有八个,或零个,也就是子节点不会有08以外的数目。

八叉树在3D空间中,可以很快地知道物体在3D场景中的位置。

八叉树算法的算法实现简单,但大数据量点云数据下,其使用比较困难的是最小粒度(叶节点)的确定。

3D-RNN

为了捕捉局部特征,使用步长为1 的金字塔池化。

方式1步长固定、窗口大小不同

方式2 窗口大小固定,不同步长

采用双向RNN,具体来说,首先将点云沿两个水平方向(xy)细分为部分重叠的块。椅子通常在桌子附近,窗户通常在墙内。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/700032.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

UPerNet 统一感知解析:场景理解的新视角 Unified Perceptual Parsing for Scene Understanding

论文题目:统一感知解析:场景理解的新视角 Unified Perceptual Parsing for Scene Understanding 论文链接:http://arxiv.org/abs/1807.10221(ECCV 2018) 代码链接:https://github.com/CSAILVision/unifiedparsing 一、摘要 研究…

深圳比创达电子|EMI电磁干扰行业:挑战到突破,电子产业新未来

随着电子技术的飞速发展,电磁干扰(EMI)问题日益凸显,成为影响电子设备性能和稳定性的重要因素。EMI电磁干扰行业作为解决这一问题的关键领域,正面临着前所未有的机遇与挑战。 一、引言:EMI电磁干扰行业的崛…

【Linux】shell脚本变量——系统变量、环境变量和用户自定义变量

系统变量 系统变量是由系统预设的,它们通常在系统启动时被加载,并对所有用户和所有shell实例都有效。这些变量通常控制着系统的行为和配置,例如PATH(命令搜索路径)、HOME(用户主目录)等。系统变…

JavaScript的运算符(算术、比较、赋值、逻辑、条件)

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…

马斯克怒了,禁止员工使用苹果设备,抨击库克出卖数据给OpenA

昨晚,苹果发布会正式宣布了一系列重磅AI升级,甚至创造了一个新的概念——苹果智能(Apple Intelligence)。 这次升级在操作系统的交互层面上进行了智能化改进,使得更多自然语音和语言理解的控制成为可能,将…

工业操作系统是企业把舵的“仪表盘”

supOS向下连接海量工业设备、仪器、仪表、产品,为各类设备提供统一的接口,实现不同设备之间的互联互通;向上连接各类工业应用软件,将企业内部的生产数据、运营数据、管理数据汇集起来,是链接海量工业设备和各类应用软件…

Docker系列.Docker Desktop中如何启用Kubernetes

Docker技术概论 Docker Desktop中如何启用Kubernetes - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.…

如何在网上下载到最新或者历史QGIS各个版本的C++源码

背景: 博主写下这篇文章的时候已经是PyQGIS下二开了两年,开发一些功能必须得去阅读QGIS的C版本源码,还得考虑到QGIS的长期稳定版和最新版的源码区别。 所以如何去下载到QGIS的源码,就成了当务之急。 QGIS3.36.3的C源码长得像这…

面试题:缓存穿透,缓存击穿,缓存雪崩

1 穿透: 两边都不存在(皇帝的新装) ——简介:缓存穿透指的是恶意用户或攻击者通过请求不存在于缓存和后端存储中的数据来使得所有请求都落到后端存储上,导致系统瘫痪。 ——详述:(缓存穿透是指查询一个一定不存在的数…

BP8519C非隔离降压型恒压芯片

BP8519封装和丝印 BP8519封装和丝印 注意: 该芯片为非隔离ACDC电源芯片,非专业人员请勿使用。专业人员在使用时必须注意防护,避免触电。 非隔离ACDC电源芯片,国内有多家半导体厂商生产,在部分追求低价格的低端仪表、灯…

性价比之选!W830NB降噪耳机高性能配置,探底价309元起

目录 一、降噪技术的革新:-45dB深度沉浸 二、超长续航,乐动不停歇 三、音质的极致追求:Hi-Res双金标认证 四、空间音频与低延迟游戏模式 五、人性化设计与智能互联 六、总结 在这个快节奏的时代,寻找一片属于自己的宁静空间…

35.四方定理

上海市计算机学会竞赛平台 | YACSYACS 是由上海市计算机学会于2019年发起的活动,旨在激发青少年对学习人工智能与算法设计的热情与兴趣,提升青少年科学素养,引导青少年投身创新发现和科研实践活动。https://www.iai.sh.cn/problem/477 题目背…

基于长短期记忆网络 LSTM 的下一个单词预测

前言 系列专栏:【深度学习:算法项目实战】✨︎ 涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对…

【精选研报】#2形态识别,均线的收敛与发散

下载地址https://pan.baidu.com/s/1L1wPR7kXCb-ZbrgwFKcIvg?pwd8888

leetcode 所有可能的路径(图的遍历:深度优先和广度优先)

leetcode 链接: 所有可能的路径 1 图的基本概念 1.1 有向图和无向图 左边是有向图,右边是无向图。对于无向图来说,图中的边没有方向,两个节点之间只可能存在一条边,比如 0 和 1 之间的边,因为是无向图&am…

成功解决IndexError: index 0 is out of bounds for axis 1 with size 0

成功解决IndexError: index 0 is out of bounds for axis 1 with size 0 🛠️ 成功解决IndexError: index 0 is out of bounds for axis 1 with size 0摘要引言正文内容(详细介绍)🤔 错误分析:为什么会发生IndexError&…

栈和队列优先级队列适配器原理

栈和队列接口函数 stack 栈接口函数 因为栈的结构限制,栈只能栈顶push和栈顶pop, 所以接口略少 queue 队列接口函数 队列只比栈多了一个接口:back 队列的front相当于栈的top 适配器 栈的类模板 其中第二个参数是Container, 且缺省参数为…

Linux操作系统学习:day02

内容来自:Linux介绍 视频推荐:[Linux基础入门教程-linux命令-vim-gcc/g -动态库/静态库 -makefile-gdb调试]( day02 5、Linux目录结构 操作系统文件结构的开始,只有一个单独的顶级目录结构,叫做根目录。所有一切都从“根”开始…

汇编:数组-寻址取数据

比例因子寻址: 比例因子寻址(也称为比例缩放索引寻址或基址加变址加比例因子寻址)是一种复杂的内存寻址方式,常用于数组和指针操作。它允许通过一个基址寄存器、一个变址寄存器和一个比例因子来计算内存地址。 语法 比例因子寻…

高清实拍类型视频素材去哪里找?高清实拍素材网站分享

在这篇文章中,我将为大家介绍一些高清实拍类型的视频素材资源,这些资源对于我们新媒体创作者来说至关重要。优质的视频素材能显著提升作品的吸引力,因此选择合适的视频素材平台非常关键。下面我将详细介绍几个非常实用的视频素材平台&#xf…